Cargando…

Predicting gene level sensitivity to JAK-STAT signaling perturbation using a mechanistic-to-machine learning framework

The JAK-STAT pathway integrates complex cytokine signals via a limited number of molecular components, inspiring numerous efforts to clarify the diversity and specificity of STAT transcription factor function. We developed a computational workflow to make global cytokine-induced gene predictions fro...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheemalavagu, Neha, Shoger, Karsen E., Cao, Yuqi M., Michalides, Brandon A., Botta, Samuel A., Faeder, James R., Gottschalk, Rachel A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245690/
https://www.ncbi.nlm.nih.gov/pubmed/37292918
http://dx.doi.org/10.1101/2023.05.19.541151
_version_ 1785054909701292032
author Cheemalavagu, Neha
Shoger, Karsen E.
Cao, Yuqi M.
Michalides, Brandon A.
Botta, Samuel A.
Faeder, James R.
Gottschalk, Rachel A.
author_facet Cheemalavagu, Neha
Shoger, Karsen E.
Cao, Yuqi M.
Michalides, Brandon A.
Botta, Samuel A.
Faeder, James R.
Gottschalk, Rachel A.
author_sort Cheemalavagu, Neha
collection PubMed
description The JAK-STAT pathway integrates complex cytokine signals via a limited number of molecular components, inspiring numerous efforts to clarify the diversity and specificity of STAT transcription factor function. We developed a computational workflow to make global cytokine-induced gene predictions from STAT phosphorylation dynamics, modeling macrophage responses to IL-6 and IL-10, which signal through common STATs, but with distinct temporal dynamics and contrasting functions. Our mechanistic-to-machine learning model identified select cytokine-induced gene sets associated with late pSTAT3 timeframes and a preferential pSTAT1 reduction upon JAK2 inhibition. We predicted and validated the impact of JAK2 inhibition on gene expression, identifying dynamically regulated genes that were sensitive or insensitive to JAK2 variation. Thus, we successfully linked STAT signaling dynamics to gene expression to support future efforts targeting pathology-associated STAT-driven gene sets. This serves as a first step in developing multi-level prediction models to understand and perturb gene expression outputs from signaling systems.
format Online
Article
Text
id pubmed-10245690
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-102456902023-06-08 Predicting gene level sensitivity to JAK-STAT signaling perturbation using a mechanistic-to-machine learning framework Cheemalavagu, Neha Shoger, Karsen E. Cao, Yuqi M. Michalides, Brandon A. Botta, Samuel A. Faeder, James R. Gottschalk, Rachel A. bioRxiv Article The JAK-STAT pathway integrates complex cytokine signals via a limited number of molecular components, inspiring numerous efforts to clarify the diversity and specificity of STAT transcription factor function. We developed a computational workflow to make global cytokine-induced gene predictions from STAT phosphorylation dynamics, modeling macrophage responses to IL-6 and IL-10, which signal through common STATs, but with distinct temporal dynamics and contrasting functions. Our mechanistic-to-machine learning model identified select cytokine-induced gene sets associated with late pSTAT3 timeframes and a preferential pSTAT1 reduction upon JAK2 inhibition. We predicted and validated the impact of JAK2 inhibition on gene expression, identifying dynamically regulated genes that were sensitive or insensitive to JAK2 variation. Thus, we successfully linked STAT signaling dynamics to gene expression to support future efforts targeting pathology-associated STAT-driven gene sets. This serves as a first step in developing multi-level prediction models to understand and perturb gene expression outputs from signaling systems. Cold Spring Harbor Laboratory 2023-05-20 /pmc/articles/PMC10245690/ /pubmed/37292918 http://dx.doi.org/10.1101/2023.05.19.541151 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Cheemalavagu, Neha
Shoger, Karsen E.
Cao, Yuqi M.
Michalides, Brandon A.
Botta, Samuel A.
Faeder, James R.
Gottschalk, Rachel A.
Predicting gene level sensitivity to JAK-STAT signaling perturbation using a mechanistic-to-machine learning framework
title Predicting gene level sensitivity to JAK-STAT signaling perturbation using a mechanistic-to-machine learning framework
title_full Predicting gene level sensitivity to JAK-STAT signaling perturbation using a mechanistic-to-machine learning framework
title_fullStr Predicting gene level sensitivity to JAK-STAT signaling perturbation using a mechanistic-to-machine learning framework
title_full_unstemmed Predicting gene level sensitivity to JAK-STAT signaling perturbation using a mechanistic-to-machine learning framework
title_short Predicting gene level sensitivity to JAK-STAT signaling perturbation using a mechanistic-to-machine learning framework
title_sort predicting gene level sensitivity to jak-stat signaling perturbation using a mechanistic-to-machine learning framework
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245690/
https://www.ncbi.nlm.nih.gov/pubmed/37292918
http://dx.doi.org/10.1101/2023.05.19.541151
work_keys_str_mv AT cheemalavaguneha predictinggenelevelsensitivitytojakstatsignalingperturbationusingamechanistictomachinelearningframework
AT shogerkarsene predictinggenelevelsensitivitytojakstatsignalingperturbationusingamechanistictomachinelearningframework
AT caoyuqim predictinggenelevelsensitivitytojakstatsignalingperturbationusingamechanistictomachinelearningframework
AT michalidesbrandona predictinggenelevelsensitivitytojakstatsignalingperturbationusingamechanistictomachinelearningframework
AT bottasamuela predictinggenelevelsensitivitytojakstatsignalingperturbationusingamechanistictomachinelearningframework
AT faederjamesr predictinggenelevelsensitivitytojakstatsignalingperturbationusingamechanistictomachinelearningframework
AT gottschalkrachela predictinggenelevelsensitivitytojakstatsignalingperturbationusingamechanistictomachinelearningframework