Cargando…
Correlating Deep Learning-Based Automated Reference Kidney Histomorphometry with Patient Demographics and Creatinine
BACKGROUND: Reference histomorphometric data of healthy human kidneys are largely lacking due to laborious quantitation requirements. Correlating histomorphometric features with clinical parameters through machine learning approaches can provide valuable information about natural population variance...
Autores principales: | Ginley, Brandon, Lucarelli, Nicholas, Zee, Jarcy, Jain, Sanjay, Han, Seung Sook, Rodrigues, Luis, Ozrazgat-Baslanti, Tezcan, Wong, Michelle L., Nadkarni, Girish, Jen, Kuang-Yu, Sarder, Pinaki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245721/ https://www.ncbi.nlm.nih.gov/pubmed/37292965 http://dx.doi.org/10.1101/2023.05.18.541348 |
Ejemplares similares
-
Discovery of Novel Digital Biomarkers for Type 2 Diabetic Nephropathy Classification via Integration of Urinary Proteomics and Pathology
por: Lucarelli, Nicholas, et al.
Publicado: (2023) -
Computer-Automated Static, Dynamic and Cellular Bone
Histomorphometry
por: Hong, Seung-Hyun, et al.
Publicado: (2012) -
Histo-fetch – on-the-fly processing of gigapixel whole slide images simplifies and speeds neural network training
por: Lutnick, Brendon, et al.
Publicado: (2022) -
Deep Multi-Modal Transfer Learning for Augmented Patient Acuity Assessment in the Intelligent ICU
por: Shickel, Benjamin, et al.
Publicado: (2021) -
Cardiovascular and Renal Disease in Chronic Critical Illness
por: Loftus, Tyler J., et al.
Publicado: (2021)