Cargando…
A bioinformatics tool for identifying intratumoral microbes from the ORIEN dataset
Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10–20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown....
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245834/ https://www.ncbi.nlm.nih.gov/pubmed/37292990 http://dx.doi.org/10.1101/2023.05.24.541982 |
_version_ | 1785054932609531904 |
---|---|
author | Wang, Cankun Ma, Anjun McNutt, Megan E. Hoyd, Rebecca Wheeler, Caroline E. Robinson, Lary A. Chan, Carlos H.F. Zakharia, Yousef Dodd, Rebecca D. Ulrich, Cornelia M. Hardikar, Sheetal Churchman, Michelle L. Tarhini, Ahmad A. Singer, Eric A. Ikeguchi, Alexandra P. McCarter, Martin D. Denko, Nicholas Tinoco, Gabriel Husain, Marium Jin, Ning Osman, Afaf E.G. Eljilany, Islam Tan, Aik Choon Coleman, Samuel S. Denko, Louis Riedlinger, Gregory Schneider, Bryan P. Spakowicz, Daniel Ma, Qin |
author_facet | Wang, Cankun Ma, Anjun McNutt, Megan E. Hoyd, Rebecca Wheeler, Caroline E. Robinson, Lary A. Chan, Carlos H.F. Zakharia, Yousef Dodd, Rebecca D. Ulrich, Cornelia M. Hardikar, Sheetal Churchman, Michelle L. Tarhini, Ahmad A. Singer, Eric A. Ikeguchi, Alexandra P. McCarter, Martin D. Denko, Nicholas Tinoco, Gabriel Husain, Marium Jin, Ning Osman, Afaf E.G. Eljilany, Islam Tan, Aik Choon Coleman, Samuel S. Denko, Louis Riedlinger, Gregory Schneider, Bryan P. Spakowicz, Daniel Ma, Qin |
author_sort | Wang, Cankun |
collection | PubMed |
description | Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10–20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer prevention and treatment responses. Understanding interactions between host microbes and cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational identification of cancer-specific microbes and their associations is still challenging due to the high dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets containing sufficient event observations to identify relationships, and the interactions within microbial communities, the heterogeneity in microbial composition, and other confounding effects that can lead to spurious associations. To solve these issues, we present a bioinformatics tool, MEGA, to identify the microbes most strongly associated with 12 cancer types. We demonstrate its utility on a dataset from a consortium of 9 cancer centers in the Oncology Research Information Exchange Network (ORIEN). This package has 3 unique features: species-sample relations are represented in a heterogeneous graph and learned by a graph attention network; it incorporates metabolic and phylogenetic information to reflect intricate relationships within microbial communities; and it provides multiple functionalities for association interpretations and visualizations. We analyzed 2704 tumor RNA-seq samples and MEGA interpreted the tissue-resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-associated microbial signatures and refine their interactions with tumors. |
format | Online Article Text |
id | pubmed-10245834 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-102458342023-06-08 A bioinformatics tool for identifying intratumoral microbes from the ORIEN dataset Wang, Cankun Ma, Anjun McNutt, Megan E. Hoyd, Rebecca Wheeler, Caroline E. Robinson, Lary A. Chan, Carlos H.F. Zakharia, Yousef Dodd, Rebecca D. Ulrich, Cornelia M. Hardikar, Sheetal Churchman, Michelle L. Tarhini, Ahmad A. Singer, Eric A. Ikeguchi, Alexandra P. McCarter, Martin D. Denko, Nicholas Tinoco, Gabriel Husain, Marium Jin, Ning Osman, Afaf E.G. Eljilany, Islam Tan, Aik Choon Coleman, Samuel S. Denko, Louis Riedlinger, Gregory Schneider, Bryan P. Spakowicz, Daniel Ma, Qin bioRxiv Article Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10–20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer prevention and treatment responses. Understanding interactions between host microbes and cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational identification of cancer-specific microbes and their associations is still challenging due to the high dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets containing sufficient event observations to identify relationships, and the interactions within microbial communities, the heterogeneity in microbial composition, and other confounding effects that can lead to spurious associations. To solve these issues, we present a bioinformatics tool, MEGA, to identify the microbes most strongly associated with 12 cancer types. We demonstrate its utility on a dataset from a consortium of 9 cancer centers in the Oncology Research Information Exchange Network (ORIEN). This package has 3 unique features: species-sample relations are represented in a heterogeneous graph and learned by a graph attention network; it incorporates metabolic and phylogenetic information to reflect intricate relationships within microbial communities; and it provides multiple functionalities for association interpretations and visualizations. We analyzed 2704 tumor RNA-seq samples and MEGA interpreted the tissue-resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-associated microbial signatures and refine their interactions with tumors. Cold Spring Harbor Laboratory 2023-05-24 /pmc/articles/PMC10245834/ /pubmed/37292990 http://dx.doi.org/10.1101/2023.05.24.541982 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Wang, Cankun Ma, Anjun McNutt, Megan E. Hoyd, Rebecca Wheeler, Caroline E. Robinson, Lary A. Chan, Carlos H.F. Zakharia, Yousef Dodd, Rebecca D. Ulrich, Cornelia M. Hardikar, Sheetal Churchman, Michelle L. Tarhini, Ahmad A. Singer, Eric A. Ikeguchi, Alexandra P. McCarter, Martin D. Denko, Nicholas Tinoco, Gabriel Husain, Marium Jin, Ning Osman, Afaf E.G. Eljilany, Islam Tan, Aik Choon Coleman, Samuel S. Denko, Louis Riedlinger, Gregory Schneider, Bryan P. Spakowicz, Daniel Ma, Qin A bioinformatics tool for identifying intratumoral microbes from the ORIEN dataset |
title | A bioinformatics tool for identifying intratumoral microbes from the ORIEN dataset |
title_full | A bioinformatics tool for identifying intratumoral microbes from the ORIEN dataset |
title_fullStr | A bioinformatics tool for identifying intratumoral microbes from the ORIEN dataset |
title_full_unstemmed | A bioinformatics tool for identifying intratumoral microbes from the ORIEN dataset |
title_short | A bioinformatics tool for identifying intratumoral microbes from the ORIEN dataset |
title_sort | bioinformatics tool for identifying intratumoral microbes from the orien dataset |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245834/ https://www.ncbi.nlm.nih.gov/pubmed/37292990 http://dx.doi.org/10.1101/2023.05.24.541982 |
work_keys_str_mv | AT wangcankun abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT maanjun abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT mcnuttmegane abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT hoydrebecca abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT wheelercarolinee abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT robinsonlarya abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT chancarloshf abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT zakhariayousef abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT doddrebeccad abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT ulrichcorneliam abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT hardikarsheetal abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT churchmanmichellel abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT tarhiniahmada abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT singererica abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT ikeguchialexandrap abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT mccartermartind abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT denkonicholas abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT tinocogabriel abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT husainmarium abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT jinning abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT osmanafafeg abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT eljilanyislam abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT tanaikchoon abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT colemansamuels abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT denkolouis abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT riedlingergregory abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT schneiderbryanp abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT spakowiczdaniel abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT maqin abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT wangcankun bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT maanjun bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT mcnuttmegane bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT hoydrebecca bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT wheelercarolinee bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT robinsonlarya bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT chancarloshf bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT zakhariayousef bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT doddrebeccad bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT ulrichcorneliam bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT hardikarsheetal bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT churchmanmichellel bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT tarhiniahmada bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT singererica bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT ikeguchialexandrap bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT mccartermartind bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT denkonicholas bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT tinocogabriel bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT husainmarium bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT jinning bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT osmanafafeg bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT eljilanyislam bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT tanaikchoon bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT colemansamuels bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT denkolouis bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT riedlingergregory bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT schneiderbryanp bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT spakowiczdaniel bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset AT maqin bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset |