Cargando…

A bioinformatics tool for identifying intratumoral microbes from the ORIEN dataset

Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10–20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown....

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Cankun, Ma, Anjun, McNutt, Megan E., Hoyd, Rebecca, Wheeler, Caroline E., Robinson, Lary A., Chan, Carlos H.F., Zakharia, Yousef, Dodd, Rebecca D., Ulrich, Cornelia M., Hardikar, Sheetal, Churchman, Michelle L., Tarhini, Ahmad A., Singer, Eric A., Ikeguchi, Alexandra P., McCarter, Martin D., Denko, Nicholas, Tinoco, Gabriel, Husain, Marium, Jin, Ning, Osman, Afaf E.G., Eljilany, Islam, Tan, Aik Choon, Coleman, Samuel S., Denko, Louis, Riedlinger, Gregory, Schneider, Bryan P., Spakowicz, Daniel, Ma, Qin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245834/
https://www.ncbi.nlm.nih.gov/pubmed/37292990
http://dx.doi.org/10.1101/2023.05.24.541982
_version_ 1785054932609531904
author Wang, Cankun
Ma, Anjun
McNutt, Megan E.
Hoyd, Rebecca
Wheeler, Caroline E.
Robinson, Lary A.
Chan, Carlos H.F.
Zakharia, Yousef
Dodd, Rebecca D.
Ulrich, Cornelia M.
Hardikar, Sheetal
Churchman, Michelle L.
Tarhini, Ahmad A.
Singer, Eric A.
Ikeguchi, Alexandra P.
McCarter, Martin D.
Denko, Nicholas
Tinoco, Gabriel
Husain, Marium
Jin, Ning
Osman, Afaf E.G.
Eljilany, Islam
Tan, Aik Choon
Coleman, Samuel S.
Denko, Louis
Riedlinger, Gregory
Schneider, Bryan P.
Spakowicz, Daniel
Ma, Qin
author_facet Wang, Cankun
Ma, Anjun
McNutt, Megan E.
Hoyd, Rebecca
Wheeler, Caroline E.
Robinson, Lary A.
Chan, Carlos H.F.
Zakharia, Yousef
Dodd, Rebecca D.
Ulrich, Cornelia M.
Hardikar, Sheetal
Churchman, Michelle L.
Tarhini, Ahmad A.
Singer, Eric A.
Ikeguchi, Alexandra P.
McCarter, Martin D.
Denko, Nicholas
Tinoco, Gabriel
Husain, Marium
Jin, Ning
Osman, Afaf E.G.
Eljilany, Islam
Tan, Aik Choon
Coleman, Samuel S.
Denko, Louis
Riedlinger, Gregory
Schneider, Bryan P.
Spakowicz, Daniel
Ma, Qin
author_sort Wang, Cankun
collection PubMed
description Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10–20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer prevention and treatment responses. Understanding interactions between host microbes and cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational identification of cancer-specific microbes and their associations is still challenging due to the high dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets containing sufficient event observations to identify relationships, and the interactions within microbial communities, the heterogeneity in microbial composition, and other confounding effects that can lead to spurious associations. To solve these issues, we present a bioinformatics tool, MEGA, to identify the microbes most strongly associated with 12 cancer types. We demonstrate its utility on a dataset from a consortium of 9 cancer centers in the Oncology Research Information Exchange Network (ORIEN). This package has 3 unique features: species-sample relations are represented in a heterogeneous graph and learned by a graph attention network; it incorporates metabolic and phylogenetic information to reflect intricate relationships within microbial communities; and it provides multiple functionalities for association interpretations and visualizations. We analyzed 2704 tumor RNA-seq samples and MEGA interpreted the tissue-resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-associated microbial signatures and refine their interactions with tumors.
format Online
Article
Text
id pubmed-10245834
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-102458342023-06-08 A bioinformatics tool for identifying intratumoral microbes from the ORIEN dataset Wang, Cankun Ma, Anjun McNutt, Megan E. Hoyd, Rebecca Wheeler, Caroline E. Robinson, Lary A. Chan, Carlos H.F. Zakharia, Yousef Dodd, Rebecca D. Ulrich, Cornelia M. Hardikar, Sheetal Churchman, Michelle L. Tarhini, Ahmad A. Singer, Eric A. Ikeguchi, Alexandra P. McCarter, Martin D. Denko, Nicholas Tinoco, Gabriel Husain, Marium Jin, Ning Osman, Afaf E.G. Eljilany, Islam Tan, Aik Choon Coleman, Samuel S. Denko, Louis Riedlinger, Gregory Schneider, Bryan P. Spakowicz, Daniel Ma, Qin bioRxiv Article Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10–20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer prevention and treatment responses. Understanding interactions between host microbes and cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational identification of cancer-specific microbes and their associations is still challenging due to the high dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets containing sufficient event observations to identify relationships, and the interactions within microbial communities, the heterogeneity in microbial composition, and other confounding effects that can lead to spurious associations. To solve these issues, we present a bioinformatics tool, MEGA, to identify the microbes most strongly associated with 12 cancer types. We demonstrate its utility on a dataset from a consortium of 9 cancer centers in the Oncology Research Information Exchange Network (ORIEN). This package has 3 unique features: species-sample relations are represented in a heterogeneous graph and learned by a graph attention network; it incorporates metabolic and phylogenetic information to reflect intricate relationships within microbial communities; and it provides multiple functionalities for association interpretations and visualizations. We analyzed 2704 tumor RNA-seq samples and MEGA interpreted the tissue-resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-associated microbial signatures and refine their interactions with tumors. Cold Spring Harbor Laboratory 2023-05-24 /pmc/articles/PMC10245834/ /pubmed/37292990 http://dx.doi.org/10.1101/2023.05.24.541982 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Wang, Cankun
Ma, Anjun
McNutt, Megan E.
Hoyd, Rebecca
Wheeler, Caroline E.
Robinson, Lary A.
Chan, Carlos H.F.
Zakharia, Yousef
Dodd, Rebecca D.
Ulrich, Cornelia M.
Hardikar, Sheetal
Churchman, Michelle L.
Tarhini, Ahmad A.
Singer, Eric A.
Ikeguchi, Alexandra P.
McCarter, Martin D.
Denko, Nicholas
Tinoco, Gabriel
Husain, Marium
Jin, Ning
Osman, Afaf E.G.
Eljilany, Islam
Tan, Aik Choon
Coleman, Samuel S.
Denko, Louis
Riedlinger, Gregory
Schneider, Bryan P.
Spakowicz, Daniel
Ma, Qin
A bioinformatics tool for identifying intratumoral microbes from the ORIEN dataset
title A bioinformatics tool for identifying intratumoral microbes from the ORIEN dataset
title_full A bioinformatics tool for identifying intratumoral microbes from the ORIEN dataset
title_fullStr A bioinformatics tool for identifying intratumoral microbes from the ORIEN dataset
title_full_unstemmed A bioinformatics tool for identifying intratumoral microbes from the ORIEN dataset
title_short A bioinformatics tool for identifying intratumoral microbes from the ORIEN dataset
title_sort bioinformatics tool for identifying intratumoral microbes from the orien dataset
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245834/
https://www.ncbi.nlm.nih.gov/pubmed/37292990
http://dx.doi.org/10.1101/2023.05.24.541982
work_keys_str_mv AT wangcankun abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT maanjun abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT mcnuttmegane abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT hoydrebecca abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT wheelercarolinee abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT robinsonlarya abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT chancarloshf abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT zakhariayousef abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT doddrebeccad abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT ulrichcorneliam abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT hardikarsheetal abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT churchmanmichellel abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT tarhiniahmada abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT singererica abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT ikeguchialexandrap abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT mccartermartind abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT denkonicholas abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT tinocogabriel abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT husainmarium abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT jinning abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT osmanafafeg abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT eljilanyislam abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT tanaikchoon abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT colemansamuels abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT denkolouis abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT riedlingergregory abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT schneiderbryanp abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT spakowiczdaniel abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT maqin abioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT wangcankun bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT maanjun bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT mcnuttmegane bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT hoydrebecca bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT wheelercarolinee bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT robinsonlarya bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT chancarloshf bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT zakhariayousef bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT doddrebeccad bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT ulrichcorneliam bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT hardikarsheetal bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT churchmanmichellel bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT tarhiniahmada bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT singererica bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT ikeguchialexandrap bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT mccartermartind bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT denkonicholas bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT tinocogabriel bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT husainmarium bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT jinning bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT osmanafafeg bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT eljilanyislam bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT tanaikchoon bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT colemansamuels bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT denkolouis bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT riedlingergregory bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT schneiderbryanp bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT spakowiczdaniel bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset
AT maqin bioinformaticstoolforidentifyingintratumoralmicrobesfromtheoriendataset