Cargando…
scGHOST: Identifying single-cell 3D genome subcompartments
New single-cell Hi-C (scHi-C) technologies enable probing of the genome-wide cell-to-cell variability in 3D genome organization from individual cells. Several computational methods have been developed to reveal single-cell 3D genome features based on scHi-C data, including A/B compartments, topologi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245874/ https://www.ncbi.nlm.nih.gov/pubmed/37292994 http://dx.doi.org/10.1101/2023.05.24.542032 |
Sumario: | New single-cell Hi-C (scHi-C) technologies enable probing of the genome-wide cell-to-cell variability in 3D genome organization from individual cells. Several computational methods have been developed to reveal single-cell 3D genome features based on scHi-C data, including A/B compartments, topologically-associating domains, and chromatin loops. However, no scHi-C analysis method currently exists for annotating single-cell subcompartments, which are crucial for providing a more refined view of large-scale chromosome spatial localization in single cells. Here, we present scGhost, a single-cell subcompartment annotation method based on graph embedding with constrained random walk sampling. Applications of scGhost to scHi-C data and single-cell 3D genome imaging data demonstrate the reliable identification of single-cell subcompartments and offer new insights into cell-to-cell variability of nuclear subcompartments. Using scHi-C data from the human prefrontal cortex, scGhost identifies cell type-specific subcompartments that are strongly connected to cell type-specific gene expression, suggesting the functional implications of single-cell subcompartments. Overall, scGhost is an effective new method for single-cell 3D genome subcompartment annotation based on scHi-C data for a broad range of biological contexts. |
---|