Cargando…
Synaptic turnover promotes efficient learning in bio-realistic spiking neural networks
While artificial machine learning systems achieve superhuman performance in specific tasks such as language processing, image and video recognition, they do so use extremely large datasets and huge amounts of power. On the other hand, the brain remains superior in several cognitively challenging tas...
Autores principales: | Malakasis, Nikos, Chavlis, Spyridon, Poirazi, Panayiota |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245885/ https://www.ncbi.nlm.nih.gov/pubmed/37292929 http://dx.doi.org/10.1101/2023.05.22.541722 |
Ejemplares similares
-
Introducing the Dendrify framework for incorporating dendrites to spiking neural networks
por: Pagkalos, Michalis, et al.
Publicado: (2023) -
Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity
por: Chavlis, Spyridon, et al.
Publicado: (2016) -
Lateral entorhinal cortex inputs modulate hippocampal dendritic excitability by recruiting a local disinhibitory microcircuit
por: Bilash, Olesia M., et al.
Publicado: (2023) -
Synaptic Clustering and Memory Formation
por: Kastellakis, George, et al.
Publicado: (2019) -
Predictive Features of Persistent Activity Emergence in Regular Spiking and Intrinsic Bursting Model Neurons
por: Sidiropoulou, Kyriaki, et al.
Publicado: (2012)