Cargando…
Cells Solved the Gibbs Paradox by Learning to Contain Entropic Forces
As Nature’s version of machine learning, evolution has solved many extraordinarily complex problems, none perhaps more remarkable than learning to harness an increase in chemical entropy (disorder) to generate directed chemical forces (order). Using muscle as a model system, here I unpack the basic...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246067/ https://www.ncbi.nlm.nih.gov/pubmed/37292461 |
Sumario: | As Nature’s version of machine learning, evolution has solved many extraordinarily complex problems, none perhaps more remarkable than learning to harness an increase in chemical entropy (disorder) to generate directed chemical forces (order). Using muscle as a model system, here I unpack the basic mechanism by which life creates order from disorder. In short, evolution tuned the physical properties of certain proteins to contain changes in chemical entropy. As it happens these are the “sensible” properties Gibbs postulated were needed to solve his paradox. |
---|