Cargando…
Machine Learning for Protein Engineering
Directed evolution of proteins has been the most effective method for protein engineering. However, a new paradigm is emerging, fusing the library generation and screening approaches of traditional directed evolution with computation through the training of machine learning models on protein sequenc...
Autores principales: | Johnston, Kadina E., Fannjiang, Clara, Wittmann, Bruce J., Hie, Brian L., Yang, Kevin K., Wu, Zachary |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246115/ https://www.ncbi.nlm.nih.gov/pubmed/37292483 |
Ejemplares similares
-
Augmenting biologging with supervised machine learning to study in situ behavior of the medusa Chrysaora fuscescens
por: Fannjiang, Clara, et al.
Publicado: (2019) -
Deploying synthetic coevolution and machine learning to engineer protein-protein interactions
por: Yang, Aerin, et al.
Publicado: (2023) -
Machine Learning-Guided
Protein Engineering
por: Kouba, Petr, et al.
Publicado: (2023) -
Nucleotide augmentation for machine learning-guided protein engineering
por: Minot, Mason, et al.
Publicado: (2022) -
Machine learning-guided channelrhodopsin engineering enables minimally-invasive optogenetics
por: Bedbrook, Claire N., et al.
Publicado: (2019)