Cargando…
REAL-TIME VARIATIONAL METHOD FOR LEARNING NEURAL TRAJECTORY AND ITS DYNAMICS
Latent variable models have become instrumental in computational neuroscience for reasoning about neural computation. This has fostered the development of powerful offline algorithms for extracting latent neural trajectories from neural recordings. However, despite the potential of real time alterna...
Autores principales: | Dowling, Matthew, Zhao, Yuan, Park, Il Memming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246118/ https://www.ncbi.nlm.nih.gov/pubmed/37292472 |
Ejemplares similares
-
Variational Online Learning of Neural Dynamics
por: Zhao, Yuan, et al.
Publicado: (2020) -
Myopic control of neural dynamics
por: Hocker, David, et al.
Publicado: (2019) -
Organization of Neural Population Code in Mouse Visual System
por: Esfahany, Kathleen, et al.
Publicado: (2018) -
Streaming Variational Monte Carlo
por: Zhao, Yuan, et al.
Publicado: (2023) -
Gated Recurrent Units Viewed Through the Lens of Continuous Time Dynamical Systems
por: Jordan, Ian D., et al.
Publicado: (2021)