Cargando…
Individual Deviations from Normative Electroencephalographic Connectivity Predict Antidepressant Response
Antidepressant medications yield unsatisfactory treatment outcomes in patients with major depressive disorder (MDD) with modest advantages over the placebo. This modest efficacy is partly due to the elusive mechanisms of antidepressant responses and unexplained heterogeneity in patient’s response to...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246152/ https://www.ncbi.nlm.nih.gov/pubmed/37292874 http://dx.doi.org/10.1101/2023.05.24.23290434 |
Sumario: | Antidepressant medications yield unsatisfactory treatment outcomes in patients with major depressive disorder (MDD) with modest advantages over the placebo. This modest efficacy is partly due to the elusive mechanisms of antidepressant responses and unexplained heterogeneity in patient’s response to treatment — the approved antidepressants only benefit a portion of patients, calling for personalized psychiatry based on individual-level prediction of treatment responses. Normative modeling, a framework that quantifies individual deviations in psychopathological dimensions, offers a promising avenue for the personalized treatment for psychiatric disorders. In this study, we built a normative model with resting-state electroencephalography (EEG) connectivity data from healthy controls of three independent cohorts. We characterized the individual deviation of MDD patients from the healthy norms, based on which we trained sparse predictive models for treatment responses of MDD patients. We successfully predicted treatment outcomes for patients receiving sertraline (r = 0.43, p < 0.001) and placebo (r = 0.33, p < 0.001). We also showed that the normative modeling framework successfully distinguished subclinical and diagnostic variabilities among subjects. From the predictive models, we identified key connectivity signatures in resting-state EEG for antidepressant treatment, suggesting differences in neural circuit involvement between treatment responses. Our findings and highly generalizable framework advance the neurobiological understanding in the potential pathways of antidepressant responses, enabling more targeted and effective MDD treatment. |
---|