Cargando…

A population-level computational histologic signature for invasive breast cancer prognosis

Breast cancer is a heterogeneous disease with variable survival outcomes. Pathologists grade the microscopic appearance of breast tissue using the Nottingham criteria, which is qualitative and does not account for non-cancerous elements within the tumor microenvironment (TME). We present the Histomi...

Descripción completa

Detalles Bibliográficos
Autores principales: Amgad, Mohamed, Hodge, James, Elsebaie, Maha, Bodelon, Clara, Puvanesarajah, Samantha, Gutman, David, Siziopikou, Kalliopi, Goldstein, Jeffery, Gaudet, Mia, Teras, Lauren, Cooper, Lee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246230/
https://www.ncbi.nlm.nih.gov/pubmed/37293118
http://dx.doi.org/10.21203/rs.3.rs-2947001/v1
_version_ 1785054991070789632
author Amgad, Mohamed
Hodge, James
Elsebaie, Maha
Bodelon, Clara
Puvanesarajah, Samantha
Gutman, David
Siziopikou, Kalliopi
Goldstein, Jeffery
Gaudet, Mia
Teras, Lauren
Cooper, Lee
author_facet Amgad, Mohamed
Hodge, James
Elsebaie, Maha
Bodelon, Clara
Puvanesarajah, Samantha
Gutman, David
Siziopikou, Kalliopi
Goldstein, Jeffery
Gaudet, Mia
Teras, Lauren
Cooper, Lee
author_sort Amgad, Mohamed
collection PubMed
description Breast cancer is a heterogeneous disease with variable survival outcomes. Pathologists grade the microscopic appearance of breast tissue using the Nottingham criteria, which is qualitative and does not account for non-cancerous elements within the tumor microenvironment (TME). We present the Histomic Prognostic Signature (HiPS), a comprehensive, interpretable scoring of the survival risk incurred by breast TME morphology. HiPS uses deep learning to accurately map cellular and tissue structures in order to measure epithelial, stromal, immune, and spatial interaction features. It was developed using a population-level cohort from the Cancer Prevention Study (CPS)-II and validated using data from three independent cohorts, including the PLCO trial, CPS-3, and The Cancer Genome Atlas. HiPS consistently outperformed pathologists’ performance in predicting survival outcomes, independent of TNM stage and pertinent variables. This was largely driven by stromal and immune features. In conclusion, HiPS is a robustly validated biomarker to support pathologists and improve prognosis.
format Online
Article
Text
id pubmed-10246230
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Journal Experts
record_format MEDLINE/PubMed
spelling pubmed-102462302023-06-08 A population-level computational histologic signature for invasive breast cancer prognosis Amgad, Mohamed Hodge, James Elsebaie, Maha Bodelon, Clara Puvanesarajah, Samantha Gutman, David Siziopikou, Kalliopi Goldstein, Jeffery Gaudet, Mia Teras, Lauren Cooper, Lee Res Sq Article Breast cancer is a heterogeneous disease with variable survival outcomes. Pathologists grade the microscopic appearance of breast tissue using the Nottingham criteria, which is qualitative and does not account for non-cancerous elements within the tumor microenvironment (TME). We present the Histomic Prognostic Signature (HiPS), a comprehensive, interpretable scoring of the survival risk incurred by breast TME morphology. HiPS uses deep learning to accurately map cellular and tissue structures in order to measure epithelial, stromal, immune, and spatial interaction features. It was developed using a population-level cohort from the Cancer Prevention Study (CPS)-II and validated using data from three independent cohorts, including the PLCO trial, CPS-3, and The Cancer Genome Atlas. HiPS consistently outperformed pathologists’ performance in predicting survival outcomes, independent of TNM stage and pertinent variables. This was largely driven by stromal and immune features. In conclusion, HiPS is a robustly validated biomarker to support pathologists and improve prognosis. American Journal Experts 2023-05-26 /pmc/articles/PMC10246230/ /pubmed/37293118 http://dx.doi.org/10.21203/rs.3.rs-2947001/v1 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. https://creativecommons.org/licenses/by/4.0/License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License (https://creativecommons.org/licenses/by/4.0/)
spellingShingle Article
Amgad, Mohamed
Hodge, James
Elsebaie, Maha
Bodelon, Clara
Puvanesarajah, Samantha
Gutman, David
Siziopikou, Kalliopi
Goldstein, Jeffery
Gaudet, Mia
Teras, Lauren
Cooper, Lee
A population-level computational histologic signature for invasive breast cancer prognosis
title A population-level computational histologic signature for invasive breast cancer prognosis
title_full A population-level computational histologic signature for invasive breast cancer prognosis
title_fullStr A population-level computational histologic signature for invasive breast cancer prognosis
title_full_unstemmed A population-level computational histologic signature for invasive breast cancer prognosis
title_short A population-level computational histologic signature for invasive breast cancer prognosis
title_sort population-level computational histologic signature for invasive breast cancer prognosis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246230/
https://www.ncbi.nlm.nih.gov/pubmed/37293118
http://dx.doi.org/10.21203/rs.3.rs-2947001/v1
work_keys_str_mv AT amgadmohamed apopulationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT hodgejames apopulationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT elsebaiemaha apopulationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT bodelonclara apopulationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT puvanesarajahsamantha apopulationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT gutmandavid apopulationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT siziopikoukalliopi apopulationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT goldsteinjeffery apopulationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT gaudetmia apopulationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT teraslauren apopulationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT cooperlee apopulationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT amgadmohamed populationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT hodgejames populationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT elsebaiemaha populationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT bodelonclara populationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT puvanesarajahsamantha populationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT gutmandavid populationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT siziopikoukalliopi populationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT goldsteinjeffery populationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT gaudetmia populationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT teraslauren populationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis
AT cooperlee populationlevelcomputationalhistologicsignatureforinvasivebreastcancerprognosis