Cargando…

Rit2 silencing in dopamine neurons drives a progressive Parkinsonian phenotype

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease and arises from dopamine (DA) neuron death selectively in the substantia nigra pars compacta (SNc). Rit2 is a reported PD risk allele, and recent single cell transcriptomic studies identified a major RIT2 cluster in PD D...

Descripción completa

Detalles Bibliográficos
Autores principales: Kearney, Patrick J., Zhang, Yuanxi, Tan, Yanglan, Kahuno, Elizabeth, Conklin, Tucker L., Fagan, Rita R., Pavchinskiy, Rebecca G., Shafer, Scott A., Yue, Zhenyu, Melikian, Haley E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246263/
https://www.ncbi.nlm.nih.gov/pubmed/37293098
http://dx.doi.org/10.21203/rs.3.rs-2944614/v1
Descripción
Sumario:Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease and arises from dopamine (DA) neuron death selectively in the substantia nigra pars compacta (SNc). Rit2 is a reported PD risk allele, and recent single cell transcriptomic studies identified a major RIT2 cluster in PD DA neurons, potentially linking Rit2 expression anomalies to a PD patient cohort. However, it is still unknown whether Rit2 loss itself is causative for PD or PD-like symptoms. Here we report that conditional Rit2 silencing in mouse DA neurons drove a progressive motor dysfunction that was more rapid in males than females and was rescued at early stages by either inhibiting the DA transporter (DAT) or with L-DOPA treatment. Motor dysfunction was accompanied by decreases in DA release, striatal DA content, phenotypic DAergic markers, and a loss of DA neurons, with increased pSer129-alpha synuclein expression. These results provide the first evidence that Rit2 loss is causal for SNc cell death and a PD-like phenotype, and reveal key sex-specific differences in the response to Rit2 loss.