Cargando…
Electrocardiogram-based deep learning algorithm for the screening of obstructive coronary artery disease
BACKGROUND: Information on electrocardiogram (ECG) has not been quantified in obstructive coronary artery disease (ObCAD), despite the deep learning (DL) algorithm being proposed as an effective diagnostic tool for acute myocardial infarction (AMI). Therefore, this study adopted a DL algorithm to su...
Autores principales: | Choi, Seong Huan, Lee, Hyun-Gye, Park, Sang-Don, Bae, Jang-Whan, Lee, Woojoo, Kim, Mi-Sook, Kim, Tae-Hun, Lee, Won Kyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246412/ https://www.ncbi.nlm.nih.gov/pubmed/37286945 http://dx.doi.org/10.1186/s12872-023-03326-4 |
Ejemplares similares
-
Machine learning approaches that use clinical, laboratory, and electrocardiogram data enhance the prediction of obstructive coronary artery disease
por: Lee, Hyun-Gyu, et al.
Publicado: (2023) -
Did inter-hospital transfer reduce mortality in patients with acute myocardial infarction in the real world? A nationwide patient cohort study
por: Kim, Mi-Sook, et al.
Publicado: (2021) -
mHealth Interventions for Lifestyle and Risk Factor Modification in Coronary Heart Disease: Randomized Controlled Trial
por: Bae, Jang-Whan, et al.
Publicado: (2021) -
Machine learning enhances the performance of short and long-term mortality prediction model in non-ST-segment elevation myocardial infarction
por: Lee, Woojoo, et al.
Publicado: (2021) -
Deep Learning Algorithms for Estimation of Demographic and Anthropometric Features from Electrocardiograms
por: Ryu, Ji Seung, et al.
Publicado: (2023)