Cargando…
Multi-modal deep learning improves grain yield prediction in wheat breeding by fusing genomics and phenomics
MOTIVATION: Developing new crop varieties with superior performance is highly important to ensure robust and sustainable global food security. The speed of variety development is limited by long field cycles and advanced generation selections in plant breeding programs. While methods to predict yiel...
Autores principales: | Togninalli, Matteo, Wang, Xu, Kucera, Tim, Shrestha, Sandesh, Juliana, Philomin, Mondal, Suchismita, Pinto, Francisco, Govindan, Velu, Crespo-Herrera, Leonardo, Huerta-Espino, Julio, Singh, Ravi P, Borgwardt, Karsten, Poland, Jesse |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246581/ https://www.ncbi.nlm.nih.gov/pubmed/37220903 http://dx.doi.org/10.1093/bioinformatics/btad336 |
Ejemplares similares
-
Genomic Selection for Grain Yield in the CIMMYT Wheat Breeding Program—Status and Perspectives
por: Juliana, Philomin, et al.
Publicado: (2020) -
Genome-Wide Association Mapping Identifies Key Genomic Regions for Grain Zinc and Iron Biofortification in Bread Wheat
por: Juliana, Philomin, et al.
Publicado: (2022) -
Haplotype-Based, Genome-Wide Association Study Reveals Stable Genomic Regions for Grain Yield in CIMMYT Spring Bread Wheat
por: Sehgal, Deepmala, et al.
Publicado: (2020) -
Prospects and Challenges of Applied Genomic Selection—A New Paradigm in Breeding for Grain Yield in Bread Wheat
por: Juliana, Philomin, et al.
Publicado: (2018) -
Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat
por: Juliana, Philomin, et al.
Publicado: (2018)