Cargando…
Deep single-cell RNA-seq data clustering with graph prototypical contrastive learning
MOTIVATION: Single-cell RNA sequencing enables researchers to study cellular heterogeneity at single-cell level. To this end, identifying cell types of cells with clustering techniques becomes an important task for downstream analysis. However, challenges of scRNA-seq data such as pervasive dropout...
Autores principales: | Lee, Junseok, Kim, Sungwon, Hyun, Dongmin, Lee, Namkyeong, Kim, Yejin, Park, Chanyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246584/ https://www.ncbi.nlm.nih.gov/pubmed/37233193 http://dx.doi.org/10.1093/bioinformatics/btad342 |
Ejemplares similares
-
Graph Clustering with High-Order Contrastive Learning
por: Li, Wang, et al.
Publicado: (2023) -
Deep graph level anomaly detection with contrastive learning
por: Luo, Xuexiong, et al.
Publicado: (2022) -
Review on Graph Clustering and Subgraph Similarity Based Analysis of Neurological Disorders
por: Thomas, Jaya, et al.
Publicado: (2016) -
scGCL: an imputation method for scRNA-seq data based on graph contrastive learning
por: Xiong, Zehao, et al.
Publicado: (2023) -
Biomedical knowledge graph learning for drug repurposing by extending guilt-by-association to multiple layers
por: Bang, Dongmin, et al.
Publicado: (2023)