Cargando…
Photogenerated charge transfer in Dion–Jacobson type layered perovskite based on naphthalene diimide
Incorporating organic semiconducting spacer cations into layered lead halide perovskite structures provides a powerful approach to mitigate the typical strong dielectric and quantum confinement effects by inducing charge-transfer between the organic and inorganic layers. Herein we report the synthes...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246667/ https://www.ncbi.nlm.nih.gov/pubmed/37293640 http://dx.doi.org/10.1039/d3sc00783a |
Sumario: | Incorporating organic semiconducting spacer cations into layered lead halide perovskite structures provides a powerful approach to mitigate the typical strong dielectric and quantum confinement effects by inducing charge-transfer between the organic and inorganic layers. Herein we report the synthesis and characterization of thin films of novel DJ-phase organic–inorganic layered perovskite semiconductors using a naphthalene diimide (NDI) based divalent spacer cation, which is shown to accept photogenerated electrons from the inorganic layer. With alkyl chain lengths of 6 carbons, an NDI-based thin film exhibited electron mobility (based on space charge-limited current for quasi-layered 〈n〉 = 5 material) was found to be as high as 0.03 cm(2) V(−1) s(−1) with no observable trap-filling region suggesting trap passivation by the NDI spacer cation. |
---|