Cargando…
Deciphering tumor ecosystems at super resolution from spatial transcriptomics with TESLA
Cell populations in the tumor microenvironment (TME), including their abundance, composition, and spatial location, are critical determinants of patient response to therapy. Recent advances in spatial transcriptomics (ST) have enabled the comprehensive characterization of gene expression in the TME....
Autores principales: | Hu, Jian, Coleman, Kyle, Zhang, Daiwei, Lee, Edward B., Kadara, Humam, Wang, Linghua, Li, Mingyao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246692/ https://www.ncbi.nlm.nih.gov/pubmed/37164011 http://dx.doi.org/10.1016/j.cels.2023.03.008 |
Ejemplares similares
-
SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning
por: Coleman, Kyle, et al.
Publicado: (2023) -
Statistical and machine learning methods for spatially resolved transcriptomics with histology
por: Hu, Jian, et al.
Publicado: (2021) -
Spatial Resolution of Coherent Cathodoluminescence
Super-Resolution Microscopy
por: Schefold, Joris, et al.
Publicado: (2019) -
Integrating whole transcriptome sequence data and public databases for analysis of somatic mutations in tumors
por: Momin, Amin A, et al.
Publicado: (2011) -
Genome-wide gene expression analysis of a murine model of prostate cancer progression: Deciphering the roles of IL-6 and p38 MAPK as potential therapeutic targets
por: Daouk, Reem, et al.
Publicado: (2020)