Cargando…
Fast algorithms for singular value decomposition and the inverse of nearly low-rank matrices
This perspective focuses on the fast algorithm design for singular value decomposition and inverse computation of nearly low-rank matrices that are potentially of big sizes.
Autores principales: | Xu, Chen, Xu, Weiwei, Jing, Kaili |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246826/ https://www.ncbi.nlm.nih.gov/pubmed/37292082 http://dx.doi.org/10.1093/nsr/nwad083 |
Ejemplares similares
-
Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition
por: Yanai, Haruo, et al.
Publicado: (2011) -
Combining Distance Matrices on Identical Taxon Sets for Multi-Gene Analysis with Singular Value Decomposition
por: Abeysundera, Melanie, et al.
Publicado: (2014) -
Unfolding with Singular Value Decomposition
por: Kartvelishvili, V
Publicado: (2011) -
Optimized truncation to integrate multi‐channel MRS data using rank‐R singular value decomposition
por: Sung, Dongsuk, et al.
Publicado: (2020) -
Handle Matrix Rank Deficiency, Noise, and Interferences
in 3D Emission–Excitation Matrices: Effective Truncated Singular-Value
Decomposition in Chemometrics Applied to the Analysis of Polycyclic
Aromatic Compounds
por: Haouchine, Merzouk, et al.
Publicado: (2022)