Cargando…
Deep Proteomics Network and Machine Learning Analysis of Human Cerebrospinal Fluid in Japanese Encephalitis Virus Infection
[Image: see text] Japanese encephalitis virus is a leading cause of neurological infection in the Asia-Pacific region with no means of detection in more remote areas. We aimed to test the hypothesis of a Japanese encephalitis (JE) protein signature in human cerebrospinal fluid (CSF) that could be ha...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246887/ https://www.ncbi.nlm.nih.gov/pubmed/37219084 http://dx.doi.org/10.1021/acs.jproteome.2c00563 |
_version_ | 1785055124546125824 |
---|---|
author | Bharucha, Tehmina Gangadharan, Bevin Kumar, Abhinav Myall, Ashleigh C. Ayhan, Nazli Pastorino, Boris Chanthongthip, Anisone Vongsouvath, Manivanh Mayxay, Mayfong Sengvilaipaseuth, Onanong Phonemixay, Ooyanong Rattanavong, Sayaphet O’Brien, Darragh P. Vendrell, Iolanda Fischer, Roman Kessler, Benedikt Turtle, Lance de Lamballerie, Xavier Dubot-Pérès, Audrey Newton, Paul N. Zitzmann, Nicole |
author_facet | Bharucha, Tehmina Gangadharan, Bevin Kumar, Abhinav Myall, Ashleigh C. Ayhan, Nazli Pastorino, Boris Chanthongthip, Anisone Vongsouvath, Manivanh Mayxay, Mayfong Sengvilaipaseuth, Onanong Phonemixay, Ooyanong Rattanavong, Sayaphet O’Brien, Darragh P. Vendrell, Iolanda Fischer, Roman Kessler, Benedikt Turtle, Lance de Lamballerie, Xavier Dubot-Pérès, Audrey Newton, Paul N. Zitzmann, Nicole |
author_sort | Bharucha, Tehmina |
collection | PubMed |
description | [Image: see text] Japanese encephalitis virus is a leading cause of neurological infection in the Asia-Pacific region with no means of detection in more remote areas. We aimed to test the hypothesis of a Japanese encephalitis (JE) protein signature in human cerebrospinal fluid (CSF) that could be harnessed in a rapid diagnostic test (RDT), contribute to understanding the host response and predict outcome during infection. Liquid chromatography and tandem mass spectrometry (LC–MS/MS), using extensive offline fractionation and tandem mass tag labeling (TMT), enabled comparison of the deep CSF proteome in JE vs other confirmed neurological infections (non-JE). Verification was performed using data-independent acquisition (DIA) LC–MS/MS. 5,070 proteins were identified, including 4,805 human proteins and 265 pathogen proteins. Feature selection and predictive modeling using TMT analysis of 147 patient samples enabled the development of a nine-protein JE diagnostic signature. This was tested using DIA analysis of an independent group of 16 patient samples, demonstrating 82% accuracy. Ultimately, validation in a larger group of patients and different locations could help refine the list to 2–3 proteins for an RDT. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD034789 and 10.6019/PXD034789. |
format | Online Article Text |
id | pubmed-10246887 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-102468872023-06-08 Deep Proteomics Network and Machine Learning Analysis of Human Cerebrospinal Fluid in Japanese Encephalitis Virus Infection Bharucha, Tehmina Gangadharan, Bevin Kumar, Abhinav Myall, Ashleigh C. Ayhan, Nazli Pastorino, Boris Chanthongthip, Anisone Vongsouvath, Manivanh Mayxay, Mayfong Sengvilaipaseuth, Onanong Phonemixay, Ooyanong Rattanavong, Sayaphet O’Brien, Darragh P. Vendrell, Iolanda Fischer, Roman Kessler, Benedikt Turtle, Lance de Lamballerie, Xavier Dubot-Pérès, Audrey Newton, Paul N. Zitzmann, Nicole J Proteome Res [Image: see text] Japanese encephalitis virus is a leading cause of neurological infection in the Asia-Pacific region with no means of detection in more remote areas. We aimed to test the hypothesis of a Japanese encephalitis (JE) protein signature in human cerebrospinal fluid (CSF) that could be harnessed in a rapid diagnostic test (RDT), contribute to understanding the host response and predict outcome during infection. Liquid chromatography and tandem mass spectrometry (LC–MS/MS), using extensive offline fractionation and tandem mass tag labeling (TMT), enabled comparison of the deep CSF proteome in JE vs other confirmed neurological infections (non-JE). Verification was performed using data-independent acquisition (DIA) LC–MS/MS. 5,070 proteins were identified, including 4,805 human proteins and 265 pathogen proteins. Feature selection and predictive modeling using TMT analysis of 147 patient samples enabled the development of a nine-protein JE diagnostic signature. This was tested using DIA analysis of an independent group of 16 patient samples, demonstrating 82% accuracy. Ultimately, validation in a larger group of patients and different locations could help refine the list to 2–3 proteins for an RDT. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD034789 and 10.6019/PXD034789. American Chemical Society 2023-05-23 /pmc/articles/PMC10246887/ /pubmed/37219084 http://dx.doi.org/10.1021/acs.jproteome.2c00563 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Bharucha, Tehmina Gangadharan, Bevin Kumar, Abhinav Myall, Ashleigh C. Ayhan, Nazli Pastorino, Boris Chanthongthip, Anisone Vongsouvath, Manivanh Mayxay, Mayfong Sengvilaipaseuth, Onanong Phonemixay, Ooyanong Rattanavong, Sayaphet O’Brien, Darragh P. Vendrell, Iolanda Fischer, Roman Kessler, Benedikt Turtle, Lance de Lamballerie, Xavier Dubot-Pérès, Audrey Newton, Paul N. Zitzmann, Nicole Deep Proteomics Network and Machine Learning Analysis of Human Cerebrospinal Fluid in Japanese Encephalitis Virus Infection |
title | Deep Proteomics
Network and Machine Learning Analysis
of Human Cerebrospinal Fluid in Japanese Encephalitis Virus
Infection |
title_full | Deep Proteomics
Network and Machine Learning Analysis
of Human Cerebrospinal Fluid in Japanese Encephalitis Virus
Infection |
title_fullStr | Deep Proteomics
Network and Machine Learning Analysis
of Human Cerebrospinal Fluid in Japanese Encephalitis Virus
Infection |
title_full_unstemmed | Deep Proteomics
Network and Machine Learning Analysis
of Human Cerebrospinal Fluid in Japanese Encephalitis Virus
Infection |
title_short | Deep Proteomics
Network and Machine Learning Analysis
of Human Cerebrospinal Fluid in Japanese Encephalitis Virus
Infection |
title_sort | deep proteomics
network and machine learning analysis
of human cerebrospinal fluid in japanese encephalitis virus
infection |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246887/ https://www.ncbi.nlm.nih.gov/pubmed/37219084 http://dx.doi.org/10.1021/acs.jproteome.2c00563 |
work_keys_str_mv | AT bharuchatehmina deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT gangadharanbevin deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT kumarabhinav deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT myallashleighc deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT ayhannazli deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT pastorinoboris deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT chanthongthipanisone deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT vongsouvathmanivanh deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT mayxaymayfong deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT sengvilaipaseuthonanong deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT phonemixayooyanong deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT rattanavongsayaphet deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT obriendarraghp deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT vendrelliolanda deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT fischerroman deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT kesslerbenedikt deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT turtlelance deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT delamballeriexavier deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT dubotperesaudrey deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT newtonpauln deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT zitzmannnicole deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection AT deepproteomicsnetworkandmachinelearninganalysisofhumancerebrospinalfluidinjapaneseencephalitisvirusinfection |