Cargando…

Enhanced sub-1 eV detection in organic photodetectors through tuning polymer energetics and microstructure

One of the key challenges facing organic photodiodes (OPDs) is increasing the detection into the infrared region. Organic semiconductor polymers provide a platform for tuning the bandgap and optoelectronic response to go beyond the traditional 1000-nanometer benchmark. In this work, we present a nea...

Descripción completa

Detalles Bibliográficos
Autores principales: Jacoutot, Polina, Scaccabarozzi, Alberto D., Nodari, Davide, Panidi, Julianna, Qiao, Zhuoran, Schiza, Andriana, Nega, Alkmini D., Dimitrakopoulou-Strauss, Antonia, Gregoriou, Vasilis G., Heeney, Martin, Chochos, Christos L., Bakulin, Artem A., Gasparini, Nicola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246890/
https://www.ncbi.nlm.nih.gov/pubmed/37285428
http://dx.doi.org/10.1126/sciadv.adh2694
_version_ 1785055125003304960
author Jacoutot, Polina
Scaccabarozzi, Alberto D.
Nodari, Davide
Panidi, Julianna
Qiao, Zhuoran
Schiza, Andriana
Nega, Alkmini D.
Dimitrakopoulou-Strauss, Antonia
Gregoriou, Vasilis G.
Heeney, Martin
Chochos, Christos L.
Bakulin, Artem A.
Gasparini, Nicola
author_facet Jacoutot, Polina
Scaccabarozzi, Alberto D.
Nodari, Davide
Panidi, Julianna
Qiao, Zhuoran
Schiza, Andriana
Nega, Alkmini D.
Dimitrakopoulou-Strauss, Antonia
Gregoriou, Vasilis G.
Heeney, Martin
Chochos, Christos L.
Bakulin, Artem A.
Gasparini, Nicola
author_sort Jacoutot, Polina
collection PubMed
description One of the key challenges facing organic photodiodes (OPDs) is increasing the detection into the infrared region. Organic semiconductor polymers provide a platform for tuning the bandgap and optoelectronic response to go beyond the traditional 1000-nanometer benchmark. In this work, we present a near-infrared (NIR) polymer with absorption up to 1500 nanometers. The polymer-based OPD delivers a high specific detectivity D(*) of 1.03 × 10(10) Jones (−2 volts) at 1200 nanometers and a dark current J(d) of just 2.3 × 10(−6) ampere per square centimeter at −2 volts. We demonstrate a strong improvement of all OPD metrics in the NIR region compared to previously reported NIR OPD due to the enhanced crystallinity and optimized energy alignment, which leads to reduced charge recombination. The high D(*) value in the 1100-to-1300-nanometer region is particularly promising for biosensing applications. We demonstrate the OPD as a pulse oximeter under NIR illumination, delivering heart rate and blood oxygen saturation readings in real time without signal amplification.
format Online
Article
Text
id pubmed-10246890
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-102468902023-06-08 Enhanced sub-1 eV detection in organic photodetectors through tuning polymer energetics and microstructure Jacoutot, Polina Scaccabarozzi, Alberto D. Nodari, Davide Panidi, Julianna Qiao, Zhuoran Schiza, Andriana Nega, Alkmini D. Dimitrakopoulou-Strauss, Antonia Gregoriou, Vasilis G. Heeney, Martin Chochos, Christos L. Bakulin, Artem A. Gasparini, Nicola Sci Adv Physical and Materials Sciences One of the key challenges facing organic photodiodes (OPDs) is increasing the detection into the infrared region. Organic semiconductor polymers provide a platform for tuning the bandgap and optoelectronic response to go beyond the traditional 1000-nanometer benchmark. In this work, we present a near-infrared (NIR) polymer with absorption up to 1500 nanometers. The polymer-based OPD delivers a high specific detectivity D(*) of 1.03 × 10(10) Jones (−2 volts) at 1200 nanometers and a dark current J(d) of just 2.3 × 10(−6) ampere per square centimeter at −2 volts. We demonstrate a strong improvement of all OPD metrics in the NIR region compared to previously reported NIR OPD due to the enhanced crystallinity and optimized energy alignment, which leads to reduced charge recombination. The high D(*) value in the 1100-to-1300-nanometer region is particularly promising for biosensing applications. We demonstrate the OPD as a pulse oximeter under NIR illumination, delivering heart rate and blood oxygen saturation readings in real time without signal amplification. American Association for the Advancement of Science 2023-06-07 /pmc/articles/PMC10246890/ /pubmed/37285428 http://dx.doi.org/10.1126/sciadv.adh2694 Text en Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Jacoutot, Polina
Scaccabarozzi, Alberto D.
Nodari, Davide
Panidi, Julianna
Qiao, Zhuoran
Schiza, Andriana
Nega, Alkmini D.
Dimitrakopoulou-Strauss, Antonia
Gregoriou, Vasilis G.
Heeney, Martin
Chochos, Christos L.
Bakulin, Artem A.
Gasparini, Nicola
Enhanced sub-1 eV detection in organic photodetectors through tuning polymer energetics and microstructure
title Enhanced sub-1 eV detection in organic photodetectors through tuning polymer energetics and microstructure
title_full Enhanced sub-1 eV detection in organic photodetectors through tuning polymer energetics and microstructure
title_fullStr Enhanced sub-1 eV detection in organic photodetectors through tuning polymer energetics and microstructure
title_full_unstemmed Enhanced sub-1 eV detection in organic photodetectors through tuning polymer energetics and microstructure
title_short Enhanced sub-1 eV detection in organic photodetectors through tuning polymer energetics and microstructure
title_sort enhanced sub-1 ev detection in organic photodetectors through tuning polymer energetics and microstructure
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246890/
https://www.ncbi.nlm.nih.gov/pubmed/37285428
http://dx.doi.org/10.1126/sciadv.adh2694
work_keys_str_mv AT jacoutotpolina enhancedsub1evdetectioninorganicphotodetectorsthroughtuningpolymerenergeticsandmicrostructure
AT scaccabarozzialbertod enhancedsub1evdetectioninorganicphotodetectorsthroughtuningpolymerenergeticsandmicrostructure
AT nodaridavide enhancedsub1evdetectioninorganicphotodetectorsthroughtuningpolymerenergeticsandmicrostructure
AT panidijulianna enhancedsub1evdetectioninorganicphotodetectorsthroughtuningpolymerenergeticsandmicrostructure
AT qiaozhuoran enhancedsub1evdetectioninorganicphotodetectorsthroughtuningpolymerenergeticsandmicrostructure
AT schizaandriana enhancedsub1evdetectioninorganicphotodetectorsthroughtuningpolymerenergeticsandmicrostructure
AT negaalkminid enhancedsub1evdetectioninorganicphotodetectorsthroughtuningpolymerenergeticsandmicrostructure
AT dimitrakopouloustraussantonia enhancedsub1evdetectioninorganicphotodetectorsthroughtuningpolymerenergeticsandmicrostructure
AT gregoriouvasilisg enhancedsub1evdetectioninorganicphotodetectorsthroughtuningpolymerenergeticsandmicrostructure
AT heeneymartin enhancedsub1evdetectioninorganicphotodetectorsthroughtuningpolymerenergeticsandmicrostructure
AT chochoschristosl enhancedsub1evdetectioninorganicphotodetectorsthroughtuningpolymerenergeticsandmicrostructure
AT bakulinartema enhancedsub1evdetectioninorganicphotodetectorsthroughtuningpolymerenergeticsandmicrostructure
AT gasparininicola enhancedsub1evdetectioninorganicphotodetectorsthroughtuningpolymerenergeticsandmicrostructure