Cargando…

Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease

The incidence of Alzheimer’s disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths(1), the latter of which is associated wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Depp, Constanze, Sun, Ting, Sasmita, Andrew Octavian, Spieth, Lena, Berghoff, Stefan A., Nazarenko, Taisiia, Overhoff, Katharina, Steixner-Kumar, Agnes A., Subramanian, Swati, Arinrad, Sahab, Ruhwedel, Torben, Möbius, Wiebke, Göbbels, Sandra, Saher, Gesine, Werner, Hauke B., Damkou, Alkmini, Zampar, Silvia, Wirths, Oliver, Thalmann, Maik, Simons, Mikael, Saito, Takashi, Saido, Takaomi, Krueger-Burg, Dilja, Kawaguchi, Riki, Willem, Michael, Haass, Christian, Geschwind, Daniel, Ehrenreich, Hannelore, Stassart, Ruth, Nave, Klaus-Armin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10247380/
https://www.ncbi.nlm.nih.gov/pubmed/37258678
http://dx.doi.org/10.1038/s41586-023-06120-6
_version_ 1785055188310032384
author Depp, Constanze
Sun, Ting
Sasmita, Andrew Octavian
Spieth, Lena
Berghoff, Stefan A.
Nazarenko, Taisiia
Overhoff, Katharina
Steixner-Kumar, Agnes A.
Subramanian, Swati
Arinrad, Sahab
Ruhwedel, Torben
Möbius, Wiebke
Göbbels, Sandra
Saher, Gesine
Werner, Hauke B.
Damkou, Alkmini
Zampar, Silvia
Wirths, Oliver
Thalmann, Maik
Simons, Mikael
Saito, Takashi
Saido, Takaomi
Krueger-Burg, Dilja
Kawaguchi, Riki
Willem, Michael
Haass, Christian
Geschwind, Daniel
Ehrenreich, Hannelore
Stassart, Ruth
Nave, Klaus-Armin
author_facet Depp, Constanze
Sun, Ting
Sasmita, Andrew Octavian
Spieth, Lena
Berghoff, Stefan A.
Nazarenko, Taisiia
Overhoff, Katharina
Steixner-Kumar, Agnes A.
Subramanian, Swati
Arinrad, Sahab
Ruhwedel, Torben
Möbius, Wiebke
Göbbels, Sandra
Saher, Gesine
Werner, Hauke B.
Damkou, Alkmini
Zampar, Silvia
Wirths, Oliver
Thalmann, Maik
Simons, Mikael
Saito, Takashi
Saido, Takaomi
Krueger-Burg, Dilja
Kawaguchi, Riki
Willem, Michael
Haass, Christian
Geschwind, Daniel
Ehrenreich, Hannelore
Stassart, Ruth
Nave, Klaus-Armin
author_sort Depp, Constanze
collection PubMed
description The incidence of Alzheimer’s disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths(1), the latter of which is associated with secondary neuroinflammation(2,3). As oligodendrocytes support axonal energy metabolism and neuronal health(4–7), we hypothesized that loss of myelin integrity could be an upstream risk factor for neuronal amyloid-β (Aβ) deposition, the central neuropathological hallmark of AD. Here we identify genetic pathways of myelin dysfunction and demyelinating injuries as potent drivers of amyloid deposition in mouse models of AD. Mechanistically, myelin dysfunction causes the accumulation of the Aβ-producing machinery within axonal swellings and increases the cleavage of cortical amyloid precursor protein. Suprisingly, AD mice with dysfunctional myelin lack plaque-corralling microglia despite an overall increase in their numbers. Bulk and single-cell transcriptomics of AD mouse models with myelin defects show that there is a concomitant induction of highly similar but distinct disease-associated microglia signatures specific to myelin damage and amyloid plaques, respectively. Despite successful induction, amyloid disease-associated microglia (DAM) that usually clear amyloid plaques are apparently distracted to nearby myelin damage. Our data suggest a working model whereby age-dependent structural defects of myelin promote Aβ plaque formation directly and indirectly and are therefore an upstream AD risk factor. Improving oligodendrocyte health and myelin integrity could be a promising target to delay development and slow progression of AD.
format Online
Article
Text
id pubmed-10247380
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-102473802023-06-09 Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease Depp, Constanze Sun, Ting Sasmita, Andrew Octavian Spieth, Lena Berghoff, Stefan A. Nazarenko, Taisiia Overhoff, Katharina Steixner-Kumar, Agnes A. Subramanian, Swati Arinrad, Sahab Ruhwedel, Torben Möbius, Wiebke Göbbels, Sandra Saher, Gesine Werner, Hauke B. Damkou, Alkmini Zampar, Silvia Wirths, Oliver Thalmann, Maik Simons, Mikael Saito, Takashi Saido, Takaomi Krueger-Burg, Dilja Kawaguchi, Riki Willem, Michael Haass, Christian Geschwind, Daniel Ehrenreich, Hannelore Stassart, Ruth Nave, Klaus-Armin Nature Article The incidence of Alzheimer’s disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths(1), the latter of which is associated with secondary neuroinflammation(2,3). As oligodendrocytes support axonal energy metabolism and neuronal health(4–7), we hypothesized that loss of myelin integrity could be an upstream risk factor for neuronal amyloid-β (Aβ) deposition, the central neuropathological hallmark of AD. Here we identify genetic pathways of myelin dysfunction and demyelinating injuries as potent drivers of amyloid deposition in mouse models of AD. Mechanistically, myelin dysfunction causes the accumulation of the Aβ-producing machinery within axonal swellings and increases the cleavage of cortical amyloid precursor protein. Suprisingly, AD mice with dysfunctional myelin lack plaque-corralling microglia despite an overall increase in their numbers. Bulk and single-cell transcriptomics of AD mouse models with myelin defects show that there is a concomitant induction of highly similar but distinct disease-associated microglia signatures specific to myelin damage and amyloid plaques, respectively. Despite successful induction, amyloid disease-associated microglia (DAM) that usually clear amyloid plaques are apparently distracted to nearby myelin damage. Our data suggest a working model whereby age-dependent structural defects of myelin promote Aβ plaque formation directly and indirectly and are therefore an upstream AD risk factor. Improving oligodendrocyte health and myelin integrity could be a promising target to delay development and slow progression of AD. Nature Publishing Group UK 2023-05-31 2023 /pmc/articles/PMC10247380/ /pubmed/37258678 http://dx.doi.org/10.1038/s41586-023-06120-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Depp, Constanze
Sun, Ting
Sasmita, Andrew Octavian
Spieth, Lena
Berghoff, Stefan A.
Nazarenko, Taisiia
Overhoff, Katharina
Steixner-Kumar, Agnes A.
Subramanian, Swati
Arinrad, Sahab
Ruhwedel, Torben
Möbius, Wiebke
Göbbels, Sandra
Saher, Gesine
Werner, Hauke B.
Damkou, Alkmini
Zampar, Silvia
Wirths, Oliver
Thalmann, Maik
Simons, Mikael
Saito, Takashi
Saido, Takaomi
Krueger-Burg, Dilja
Kawaguchi, Riki
Willem, Michael
Haass, Christian
Geschwind, Daniel
Ehrenreich, Hannelore
Stassart, Ruth
Nave, Klaus-Armin
Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease
title Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease
title_full Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease
title_fullStr Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease
title_full_unstemmed Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease
title_short Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease
title_sort myelin dysfunction drives amyloid-β deposition in models of alzheimer’s disease
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10247380/
https://www.ncbi.nlm.nih.gov/pubmed/37258678
http://dx.doi.org/10.1038/s41586-023-06120-6
work_keys_str_mv AT deppconstanze myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT sunting myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT sasmitaandrewoctavian myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT spiethlena myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT berghoffstefana myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT nazarenkotaisiia myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT overhoffkatharina myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT steixnerkumaragnesa myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT subramanianswati myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT arinradsahab myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT ruhwedeltorben myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT mobiuswiebke myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT gobbelssandra myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT sahergesine myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT wernerhaukeb myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT damkoualkmini myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT zamparsilvia myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT wirthsoliver myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT thalmannmaik myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT simonsmikael myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT saitotakashi myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT saidotakaomi myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT kruegerburgdilja myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT kawaguchiriki myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT willemmichael myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT haasschristian myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT geschwinddaniel myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT ehrenreichhannelore myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT stassartruth myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease
AT naveklausarmin myelindysfunctiondrivesamyloidbdepositioninmodelsofalzheimersdisease