Cargando…
Brain-optimized deep neural network models of human visual areas learn non-hierarchical representations
Deep neural networks (DNNs) optimized for visual tasks learn representations that align layer depth with the hierarchy of visual areas in the primate brain. One interpretation of this finding is that hierarchical representations are necessary to accurately predict brain activity in the primate visua...
Autores principales: | St-Yves, Ghislain, Allen, Emily J., Wu, Yihan, Kay, Kendrick, Naselaris, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10247700/ https://www.ncbi.nlm.nih.gov/pubmed/37286563 http://dx.doi.org/10.1038/s41467-023-38674-4 |
Ejemplares similares
-
NeuroGen: Activation optimized image synthesis for discovery neuroscience
por: Gu, Zijin, et al.
Publicado: (2022) -
Second Sight: Using brain-optimized encoding models to align image distributions with human brain activity
por: Kneeland, Reese, et al.
Publicado: (2023) -
Reconstructing seen images from human brain activity via guided stochastic search
por: Kneeland, Reese, et al.
Publicado: (2023) -
Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features
por: Horikawa, Tomoyasu, et al.
Publicado: (2017) -
Modulation of Spectral Representation and Connectivity Patterns in Response to Visual Narrative in the Human Brain
por: Sabra, Zahraa, et al.
Publicado: (2022)