Cargando…
DEDTI versus IEDTI: efficient and predictive models of drug-target interactions
Drug repurposing is an active area of research that aims to decrease the cost and time of drug development. Most of those efforts are primarily concerned with the prediction of drug-target interactions. Many evaluation models, from matrix factorization to more cutting-edge deep neural networks, have...
Autores principales: | Zabihian, Arash, Sayyad, Faeze Zakaryapour, Hashemi, Seyyed Morteza, Shami Tanha, Reza, Hooshmand, Mohsen, Gharaghani, Sajjad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10247802/ https://www.ncbi.nlm.nih.gov/pubmed/37286613 http://dx.doi.org/10.1038/s41598-023-36438-0 |
Ejemplares similares
-
DRaW: prediction of COVID-19 antivirals by deep learning—an objection on using matrix factorization
por: Hashemi, S. Morteza, et al.
Publicado: (2023) -
Rational approaches to discover SARS-CoV-2/ACE2 interaction inhibitors: Pharmacophore-based virtual screening, molecular docking, molecular dynamics and binding free energy studies
por: Yazdani, Mohsen, et al.
Publicado: (2023) -
Correlation of short knee and full-length X-rays in evaluating coronal plane alignment in total knee arthroplasty
por: Kazemi, Seyyed-Morteza, et al.
Publicado: (2022) -
Pharmacophore model, docking, QSAR, and molecular dynamics simulation studies of substituted cyclic imides and herbal medicines as COX-2 inhibitors
por: Moussa, Nathalie, et al.
Publicado: (2021) -
Moonlighting protein prediction using physico-chemical and evolutional properties via machine learning methods
por: Shirafkan, Farshid, et al.
Publicado: (2021)