Cargando…
GTMNet: a vision transformer with guided transmission map for single remote sensing image dehazing
Existing dehazing algorithms are not effective for remote sensing images (RSIs) with dense haze, and dehazed results are prone to over-enhancement, color distortion, and artifacts. To tackle these problems, we propose a model GTMNet based on convolutional neural networks (CNNs) and vision transforme...
Autores principales: | Li, Haiqin, Zhang, Yaping, Liu, Jiatao, Ma, Yuanjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10247807/ https://www.ncbi.nlm.nih.gov/pubmed/37286555 http://dx.doi.org/10.1038/s41598-023-36149-6 |
Ejemplares similares
-
A Review of Remote Sensing Image Dehazing
por: Liu, Juping, et al.
Publicado: (2021) -
Deep guided transformer dehazing network
por: Zhang, Shengdong, et al.
Publicado: (2023) -
Remote Sensing Image Dehazing through an Unsupervised Generative Adversarial Network
por: Zhao, Liquan, et al.
Publicado: (2023) -
Transformer-based progressive residual network for single image dehazing
por: Yang, Zhe, et al.
Publicado: (2022) -
Single image mixed dehazing method based on numerical iterative model and DehazeNet
por: Jiao, Wenjiang, et al.
Publicado: (2021)