Cargando…
Deciphering tissue heterogeneity from spatially resolved transcriptomics by the autoencoder-assisted graph convolutional neural network
Spatially resolved transcriptomics (SRT) provides an unprecedented opportunity to investigate the complex and heterogeneous tissue organization. However, it is challenging for a single model to learn an effective representation within and across spatial contexts. To solve the issue, we develop a nov...
Autores principales: | Li, Xinxing, Huang, Wendong, Xu, Xuan, Zhang, Hong-Yu, Shi, Qianqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248005/ https://www.ncbi.nlm.nih.gov/pubmed/37303949 http://dx.doi.org/10.3389/fgene.2023.1202409 |
Ejemplares similares
-
GADTI: Graph Autoencoder Approach for DTI Prediction From Heterogeneous Network
por: Liu, Zhixian, et al.
Publicado: (2021) -
Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder
por: Dong, Kangning, et al.
Publicado: (2022) -
Representation Learning: Recommendation With Knowledge Graph via Triple-Autoencoder
por: Geng, Yishuai, et al.
Publicado: (2022) -
Single-cell RNA-seq data analysis using graph autoencoders and graph attention networks
por: Feng, Xiang, et al.
Publicado: (2022) -
Drug-target interaction prediction based on spatial consistency constraint and graph convolutional autoencoder
por: Chen, Peng, et al.
Publicado: (2023)