Cargando…
Effects of experimental impairments on the security of continuous-variable quantum key distribution
Quantum Key Distribution (QKD) is a cutting-edge communication method that enables secure communication between two parties. Continuous-variable QKD (CV-QKD) is a promising approach to QKD that has several advantages over traditional discrete-variable systems. Despite its potential, CV-QKD systems a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248109/ https://www.ncbi.nlm.nih.gov/pubmed/37303546 http://dx.doi.org/10.1016/j.heliyon.2023.e16670 |
Sumario: | Quantum Key Distribution (QKD) is a cutting-edge communication method that enables secure communication between two parties. Continuous-variable QKD (CV-QKD) is a promising approach to QKD that has several advantages over traditional discrete-variable systems. Despite its potential, CV-QKD systems are highly sensitive to optical and electronic component impairments, which can significantly reduce the secret key rate. In this research, we address this challenge by modeling a CV-QKD system to simulate the impact of individual impairments on the secret key rate. The results show that laser frequency drifts and small imperfections in electro-optical devices such as the beam splitter and the balanced detector have a negative impact on the secret key rate. This provides valuable insights into strategies for optimizing the performance of CV-QKD systems and overcome limitations caused by component impairments. By offering a method to analyze them, the study enables the establishment of quality standards for the components of CV-QKD systems, driving the development of advanced technologies for secure communication in the future. |
---|