Cargando…
CNN-based deep learning method for predicting the disease response to the Neoadjuvant Chemotherapy (NAC) treatment in breast cancer
OBJECTIVE: The objective of the study is to evaluate the performance of CNN-based proposed models for predicting patients' response to NAC treatment and the disease development process in the pathological area. The study aims to determine the main criteria that affect the model's success d...
Autores principales: | Kirelli, Yasin, Arslankaya, Seher, Koçer, Havva Belma, Harmantepe, Tarık |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248274/ https://www.ncbi.nlm.nih.gov/pubmed/37303531 http://dx.doi.org/10.1016/j.heliyon.2023.e16812 |
Ejemplares similares
-
Sentiment Analysis of Shared Tweets on Global Warming on Twitter with Data Mining Methods: A Case Study on Turkish Language
por: Kirelli, Yasin, et al.
Publicado: (2020) -
Navigating the microbial community in the trachea-oropharynx of breast cancer patients with or without neoadjuvant chemotherapy (NAC) via endotracheal tube: has NAC caused any change?
por: Kim, Hee Yeon, et al.
Publicado: (2023) -
Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method
por: Qu, Yu‐Hong, et al.
Publicado: (2020) -
Comparison of two procedures for symptomatic hemorrhoidal disease: Ligation under Vision and Ferguson Hemorrhoidectomy - a retrospective cohort study
por: Demir, Hakan, et al.
Publicado: (2017) -
Multimodal deep learning models for the prediction of pathologic response to neoadjuvant chemotherapy in breast cancer
por: Joo, Sunghoon, et al.
Publicado: (2021)