Cargando…
Home monitoring with connected mobile devices for asthma attack prediction with machine learning
Monitoring asthma is essential for self-management. However, traditional monitoring methods require high levels of active engagement, and some patients may find this tedious. Passive monitoring with mobile-health devices, especially when combined with machine-learning, provides an avenue to reduce m...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248342/ https://www.ncbi.nlm.nih.gov/pubmed/37291158 http://dx.doi.org/10.1038/s41597-023-02241-9 |
Sumario: | Monitoring asthma is essential for self-management. However, traditional monitoring methods require high levels of active engagement, and some patients may find this tedious. Passive monitoring with mobile-health devices, especially when combined with machine-learning, provides an avenue to reduce management burden. Data for developing machine-learning algorithms are scarce, and gathering new data is expensive. A few datasets, such as the Asthma Mobile Health Study, are publicly available, but they only consist of self-reported diaries and lack any objective and passively collected data. To fill this gap, we carried out a 2-phase, 7-month AAMOS-00 observational study to monitor asthma using three smart-monitoring devices (smart-peak-flow-meter/smart-inhaler/smartwatch), and daily symptom questionnaires. Combined with localised weather, pollen, and air-quality reports, we collected a rich longitudinal dataset to explore the feasibility of passive monitoring and asthma attack prediction. This valuable anonymised dataset for phase-2 of the study (device monitoring) has been made publicly available. Between June-2021 and June-2022, in the midst of UK’s COVID-19 lockdowns, 22 participants across the UK provided 2,054 unique patient-days of data. |
---|