Cargando…
Home monitoring with connected mobile devices for asthma attack prediction with machine learning
Monitoring asthma is essential for self-management. However, traditional monitoring methods require high levels of active engagement, and some patients may find this tedious. Passive monitoring with mobile-health devices, especially when combined with machine-learning, provides an avenue to reduce m...
Autores principales: | Tsang, Kevin C. H., Pinnock, Hilary, Wilson, Andrew M., Salvi, Dario, Shah, Syed Ahmar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248342/ https://www.ncbi.nlm.nih.gov/pubmed/37291158 http://dx.doi.org/10.1038/s41597-023-02241-9 |
Ejemplares similares
-
Predicting asthma attacks using connected mobile devices and machine learning: the AAMOS-00 observational study protocol
por: Tsang, Kevin Cheuk Him, et al.
Publicado: (2022) -
Application of Machine Learning Algorithms for Asthma Management with mHealth: A Clinical Review
por: Tsang, Kevin C H, et al.
Publicado: (2022) -
The asthma mobile health study, smartphone data collected using ResearchKit
por: Chan, Yu-Feng Yvonne, et al.
Publicado: (2018) -
Mobile device-based Bluetooth Low Energy Database for range estimation in indoor environments
por: Pascacio, Pavel, et al.
Publicado: (2022) -
Home-to-school pedestrian mobility GPS data from a citizen science experiment in the Barcelona area
por: Larroya, Ferran, et al.
Publicado: (2023)