Cargando…
WRANet: wavelet integrated residual attention U-Net network for medical image segmentation
Medical image segmentation is crucial for the diagnosis and analysis of disease. Deep convolutional neural network methods have achieved great success in medical image segmentation. However, they are highly susceptible to noise interference during the propagation of the network, where weak noise can...
Autores principales: | Zhao, Yawu, Wang, Shudong, Zhang, Yulin, Qiao, Sibo, Zhang, Mufei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248349/ https://www.ncbi.nlm.nih.gov/pubmed/37361970 http://dx.doi.org/10.1007/s40747-023-01119-y |
Ejemplares similares
-
CRANet: a comprehensive residual attention network for intracranial aneurysm image classification
por: Zhao, Yawu, et al.
Publicado: (2022) -
DARU‐Net: A dual attention residual U‐Net for uterine fibroids segmentation on MRI
por: Zhang, Jian, et al.
Publicado: (2023) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
SCAU-Net: Spatial-Channel Attention U-Net for Gland Segmentation
por: Zhao, Peng, et al.
Publicado: (2020) -
Multi-Layer Preprocessing and U-Net with Residual Attention Block for Retinal Blood Vessel Segmentation
por: Alsayat, Ahmed, et al.
Publicado: (2023)