Cargando…

High-intensity ultrasound-based process strategies for obtaining edible sunflower (Helianthus annuus L.) flour with low-phenolic and high-protein content

The sunflower Helianthus annuus L. represents the 4th largest oilseed cultivated area worldwide. Its balanced amino acid content and low content of antinutrient factors give sunflower protein a good nutritional value. However, it is underexploited as a supplement to human nutrition due to the high c...

Descripción completa

Detalles Bibliográficos
Autores principales: Friolli, Mariana Pacífico dos Santos, Silva, Eric Keven, Napoli, Daniele Cristina da Silva, Sanches, Vítor Lacerda, Rostagno, Maurício Ariel, Pacheco, Maria Teresa Bertoldo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248386/
https://www.ncbi.nlm.nih.gov/pubmed/37267822
http://dx.doi.org/10.1016/j.ultsonch.2023.106449
_version_ 1785055361846214656
author Friolli, Mariana Pacífico dos Santos
Silva, Eric Keven
Napoli, Daniele Cristina da Silva
Sanches, Vítor Lacerda
Rostagno, Maurício Ariel
Pacheco, Maria Teresa Bertoldo
author_facet Friolli, Mariana Pacífico dos Santos
Silva, Eric Keven
Napoli, Daniele Cristina da Silva
Sanches, Vítor Lacerda
Rostagno, Maurício Ariel
Pacheco, Maria Teresa Bertoldo
author_sort Friolli, Mariana Pacífico dos Santos
collection PubMed
description The sunflower Helianthus annuus L. represents the 4th largest oilseed cultivated area worldwide. Its balanced amino acid content and low content of antinutrient factors give sunflower protein a good nutritional value. However, it is underexploited as a supplement to human nutrition due to the high content of phenolic compounds that reduce the sensory quality of the product. Thus, this study aimed at obtaining a high protein and low phenolic compound sunflower flour for use in the food industry by designing separation processes with high intensity ultrasound technology. First, sunflower meal, a residue of cold-press oil extraction processing, was defatted using supercritical CO(2) technology. Subsequently, sunflower meal was subjected to different conditions for ultrasound-assisted extraction of phenolic compounds. The effects of solvent composition (water: ethanol) and pH (4 to 12) were investigated using different acoustic energies and continuous and pulsed process approaches. The employed process strategies reduced the oil content of sunflower meal by up to 90% and reduced 83% of the phenolic content. Furthermore, the protein content of sunflower flour was increased up to approximately 72% with respect to sunflower meal. The acoustic cavitation-based processes using the optimized solvent composition were efficient in breaking down the cellular structure of the plant matrix and facilitated the separation of proteins and phenolic compounds, while preserving the functional groups of the product. Therefore, a new ingredient with high protein content and potential application for human food was obtained from the residue of sunflower oil processing using green technologies.
format Online
Article
Text
id pubmed-10248386
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-102483862023-06-09 High-intensity ultrasound-based process strategies for obtaining edible sunflower (Helianthus annuus L.) flour with low-phenolic and high-protein content Friolli, Mariana Pacífico dos Santos Silva, Eric Keven Napoli, Daniele Cristina da Silva Sanches, Vítor Lacerda Rostagno, Maurício Ariel Pacheco, Maria Teresa Bertoldo Ultrason Sonochem Original Research Article The sunflower Helianthus annuus L. represents the 4th largest oilseed cultivated area worldwide. Its balanced amino acid content and low content of antinutrient factors give sunflower protein a good nutritional value. However, it is underexploited as a supplement to human nutrition due to the high content of phenolic compounds that reduce the sensory quality of the product. Thus, this study aimed at obtaining a high protein and low phenolic compound sunflower flour for use in the food industry by designing separation processes with high intensity ultrasound technology. First, sunflower meal, a residue of cold-press oil extraction processing, was defatted using supercritical CO(2) technology. Subsequently, sunflower meal was subjected to different conditions for ultrasound-assisted extraction of phenolic compounds. The effects of solvent composition (water: ethanol) and pH (4 to 12) were investigated using different acoustic energies and continuous and pulsed process approaches. The employed process strategies reduced the oil content of sunflower meal by up to 90% and reduced 83% of the phenolic content. Furthermore, the protein content of sunflower flour was increased up to approximately 72% with respect to sunflower meal. The acoustic cavitation-based processes using the optimized solvent composition were efficient in breaking down the cellular structure of the plant matrix and facilitated the separation of proteins and phenolic compounds, while preserving the functional groups of the product. Therefore, a new ingredient with high protein content and potential application for human food was obtained from the residue of sunflower oil processing using green technologies. Elsevier 2023-05-23 /pmc/articles/PMC10248386/ /pubmed/37267822 http://dx.doi.org/10.1016/j.ultsonch.2023.106449 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Research Article
Friolli, Mariana Pacífico dos Santos
Silva, Eric Keven
Napoli, Daniele Cristina da Silva
Sanches, Vítor Lacerda
Rostagno, Maurício Ariel
Pacheco, Maria Teresa Bertoldo
High-intensity ultrasound-based process strategies for obtaining edible sunflower (Helianthus annuus L.) flour with low-phenolic and high-protein content
title High-intensity ultrasound-based process strategies for obtaining edible sunflower (Helianthus annuus L.) flour with low-phenolic and high-protein content
title_full High-intensity ultrasound-based process strategies for obtaining edible sunflower (Helianthus annuus L.) flour with low-phenolic and high-protein content
title_fullStr High-intensity ultrasound-based process strategies for obtaining edible sunflower (Helianthus annuus L.) flour with low-phenolic and high-protein content
title_full_unstemmed High-intensity ultrasound-based process strategies for obtaining edible sunflower (Helianthus annuus L.) flour with low-phenolic and high-protein content
title_short High-intensity ultrasound-based process strategies for obtaining edible sunflower (Helianthus annuus L.) flour with low-phenolic and high-protein content
title_sort high-intensity ultrasound-based process strategies for obtaining edible sunflower (helianthus annuus l.) flour with low-phenolic and high-protein content
topic Original Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248386/
https://www.ncbi.nlm.nih.gov/pubmed/37267822
http://dx.doi.org/10.1016/j.ultsonch.2023.106449
work_keys_str_mv AT friollimarianapacificodossantos highintensityultrasoundbasedprocessstrategiesforobtainingediblesunflowerhelianthusannuuslflourwithlowphenolicandhighproteincontent
AT silvaerickeven highintensityultrasoundbasedprocessstrategiesforobtainingediblesunflowerhelianthusannuuslflourwithlowphenolicandhighproteincontent
AT napolidanielecristinadasilva highintensityultrasoundbasedprocessstrategiesforobtainingediblesunflowerhelianthusannuuslflourwithlowphenolicandhighproteincontent
AT sanchesvitorlacerda highintensityultrasoundbasedprocessstrategiesforobtainingediblesunflowerhelianthusannuuslflourwithlowphenolicandhighproteincontent
AT rostagnomauricioariel highintensityultrasoundbasedprocessstrategiesforobtainingediblesunflowerhelianthusannuuslflourwithlowphenolicandhighproteincontent
AT pachecomariateresabertoldo highintensityultrasoundbasedprocessstrategiesforobtainingediblesunflowerhelianthusannuuslflourwithlowphenolicandhighproteincontent