Cargando…
High-accuracy detection of supraspinatus fatty infiltration in shoulder MRI using convolutional neural network algorithms
BACKGROUND: The supraspinatus muscle fatty infiltration (SMFI) is a crucial MRI shoulder finding to determine the patient’s prognosis. Clinicians have used the Goutallier classification to diagnose it. Deep learning algorithms have been demonstrated to have higher accuracy than traditional methods....
Autores principales: | Saavedra, Juan Pablo, Droppelmann, Guillermo, García, Nicolás, Jorquera, Carlos, Feijoo, Felipe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248442/ https://www.ncbi.nlm.nih.gov/pubmed/37305126 http://dx.doi.org/10.3389/fmed.2023.1070499 |
Ejemplares similares
-
Lateral elbow tendinopathy and artificial intelligence: Binary and multilabel findings detection using machine learning algorithms
por: Droppelmann, Guillermo, et al.
Publicado: (2022) -
Deep-learning framework and computer assisted fatty infiltration analysis for the supraspinatus muscle in MRI
por: Ro, Kyunghan, et al.
Publicado: (2021) -
Accuracy of Critical Shoulder Angle and Acromial Index for Predicting Supraspinatus Tendinopathy
por: Hsu, Tzu-Herng, et al.
Publicado: (2022) -
Effect of Neural Therapy on shoulder dysfunction and pain in supraspinatus tendinopathy
por: Bashan, Ibrahim, et al.
Publicado: (2022) -
Isolated supraspinatus muscle atrophy and fatty infiltration associated with recurrent anterior shoulder instability: A case report and review of the literature
por: Alomar, Abdulaziz Z., et al.
Publicado: (2011)