Cargando…
Improved stability and activity of laccase through de novo and post-synthesis immobilization on a hierarchically porous metal–organic framework (ZIF-8)
Porous materials such as metal–organic frameworks (MOFs) are considered to be suitable materials for immobilizing enzymes to improve their stability. However, conventional MOFs reduce the enzymes' catalytic activity due to difficulties with mass transfer and diffusing reactants after their micr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248541/ https://www.ncbi.nlm.nih.gov/pubmed/37304779 http://dx.doi.org/10.1039/d3ra01571h |
_version_ | 1785055398352388096 |
---|---|
author | Xu, Ran Zhang, Xujie Zelekew, Osman Ahmend Schott, Eduardo Wu, Yi-nan |
author_facet | Xu, Ran Zhang, Xujie Zelekew, Osman Ahmend Schott, Eduardo Wu, Yi-nan |
author_sort | Xu, Ran |
collection | PubMed |
description | Porous materials such as metal–organic frameworks (MOFs) are considered to be suitable materials for immobilizing enzymes to improve their stability. However, conventional MOFs reduce the enzymes' catalytic activity due to difficulties with mass transfer and diffusing reactants after their micropores are occupied by enzyme molecules. To address these issues, a novel hierarchically structured zeolitic imidazolate framework-8 (HZIF-8) was prepared to study the effects of different laccase immobilization approaches such as the post-synthesis (LAC@HZIF-8-P) and de novo (LAC@HZIF-8-D) immobilization of catalytic activities for removing 2,4-dichlorophenol (2,4-DCP). The results showed higher catalytic activity for the laccase-immobilized LAC@HZIF-8 prepared using different methods than for the LAC@MZIF-8 sample, with 80% of 2,4-DCP removed under optimal conditions. These results could be attributable to the multistage structure of HZIF-8. The LAC@HZIF-8-D sample was stable and superior to LAC@HZIF-8-P, maintaining a 2,4-DCP removal efficiency of 80% after three recycles and demonstrating superior laccase thermostability and storage stability. Moreover, after loading with copper nanoparticles, the LAC@HZIF-8-D approach exhibited a 2,4-DCP removal efficiency of 95%, a promising finding for its potential use in environmental purification. |
format | Online Article Text |
id | pubmed-10248541 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-102485412023-06-09 Improved stability and activity of laccase through de novo and post-synthesis immobilization on a hierarchically porous metal–organic framework (ZIF-8) Xu, Ran Zhang, Xujie Zelekew, Osman Ahmend Schott, Eduardo Wu, Yi-nan RSC Adv Chemistry Porous materials such as metal–organic frameworks (MOFs) are considered to be suitable materials for immobilizing enzymes to improve their stability. However, conventional MOFs reduce the enzymes' catalytic activity due to difficulties with mass transfer and diffusing reactants after their micropores are occupied by enzyme molecules. To address these issues, a novel hierarchically structured zeolitic imidazolate framework-8 (HZIF-8) was prepared to study the effects of different laccase immobilization approaches such as the post-synthesis (LAC@HZIF-8-P) and de novo (LAC@HZIF-8-D) immobilization of catalytic activities for removing 2,4-dichlorophenol (2,4-DCP). The results showed higher catalytic activity for the laccase-immobilized LAC@HZIF-8 prepared using different methods than for the LAC@MZIF-8 sample, with 80% of 2,4-DCP removed under optimal conditions. These results could be attributable to the multistage structure of HZIF-8. The LAC@HZIF-8-D sample was stable and superior to LAC@HZIF-8-P, maintaining a 2,4-DCP removal efficiency of 80% after three recycles and demonstrating superior laccase thermostability and storage stability. Moreover, after loading with copper nanoparticles, the LAC@HZIF-8-D approach exhibited a 2,4-DCP removal efficiency of 95%, a promising finding for its potential use in environmental purification. The Royal Society of Chemistry 2023-06-08 /pmc/articles/PMC10248541/ /pubmed/37304779 http://dx.doi.org/10.1039/d3ra01571h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Xu, Ran Zhang, Xujie Zelekew, Osman Ahmend Schott, Eduardo Wu, Yi-nan Improved stability and activity of laccase through de novo and post-synthesis immobilization on a hierarchically porous metal–organic framework (ZIF-8) |
title | Improved stability and activity of laccase through de novo and post-synthesis immobilization on a hierarchically porous metal–organic framework (ZIF-8) |
title_full | Improved stability and activity of laccase through de novo and post-synthesis immobilization on a hierarchically porous metal–organic framework (ZIF-8) |
title_fullStr | Improved stability and activity of laccase through de novo and post-synthesis immobilization on a hierarchically porous metal–organic framework (ZIF-8) |
title_full_unstemmed | Improved stability and activity of laccase through de novo and post-synthesis immobilization on a hierarchically porous metal–organic framework (ZIF-8) |
title_short | Improved stability and activity of laccase through de novo and post-synthesis immobilization on a hierarchically porous metal–organic framework (ZIF-8) |
title_sort | improved stability and activity of laccase through de novo and post-synthesis immobilization on a hierarchically porous metal–organic framework (zif-8) |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248541/ https://www.ncbi.nlm.nih.gov/pubmed/37304779 http://dx.doi.org/10.1039/d3ra01571h |
work_keys_str_mv | AT xuran improvedstabilityandactivityoflaccasethroughdenovoandpostsynthesisimmobilizationonahierarchicallyporousmetalorganicframeworkzif8 AT zhangxujie improvedstabilityandactivityoflaccasethroughdenovoandpostsynthesisimmobilizationonahierarchicallyporousmetalorganicframeworkzif8 AT zelekewosmanahmend improvedstabilityandactivityoflaccasethroughdenovoandpostsynthesisimmobilizationonahierarchicallyporousmetalorganicframeworkzif8 AT schotteduardo improvedstabilityandactivityoflaccasethroughdenovoandpostsynthesisimmobilizationonahierarchicallyporousmetalorganicframeworkzif8 AT wuyinan improvedstabilityandactivityoflaccasethroughdenovoandpostsynthesisimmobilizationonahierarchicallyporousmetalorganicframeworkzif8 |