Cargando…
Construction of diagnostic and prognostic models based on gene signatures of nasopharyngeal carcinoma by machine learning methods
BACKGROUND: Diagnostic models based on gene signatures of nasopharyngeal carcinoma (NPC) were constructed by random forest (RF) and artificial neural network (ANN) algorithms. Least absolute shrinkage and selection operator (Lasso)-Cox regression was used to select and build prognostic models based...
Autores principales: | Wang, Yiren, He, Yongcheng, Duan, Xiaodong, Pang, Haowen, Zhou, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248568/ https://www.ncbi.nlm.nih.gov/pubmed/37304552 http://dx.doi.org/10.21037/tcr-22-2700 |
Ejemplares similares
-
Diagnostic and Prognostic Indications of Nasopharyngeal Carcinoma
por: E. A. R., Engku Nur Syafirah, et al.
Publicado: (2020) -
Excavation of diagnostic biomarkers and construction of prognostic model for clear cell renal cell carcinoma based on urine proteomics
por: Yang, Yiren, et al.
Publicado: (2023) -
Construction and Validation of Novel Diagnostic and Prognostic DNA Methylation Signatures for Hepatocellular Carcinoma
por: Li, Ran, et al.
Publicado: (2020) -
Machine Learning Based on MRI DWI Radiomics Features for Prognostic Prediction in Nasopharyngeal Carcinoma
por: Hu, Qiyi, et al.
Publicado: (2022) -
Identification of the mitophagy-related diagnostic biomarkers in hepatocellular carcinoma based on machine learning algorithm and construction of prognostic model
por: Tu, Dao-yuan, et al.
Publicado: (2023)