Cargando…
Using machine learning to detect coronaviruses potentially infectious to humans
Establishing the host range for novel viruses remains a challenge. Here, we address the challenge of identifying non-human animal coronaviruses that may infect humans by creating an artificial neural network model that learns from spike protein sequences of alpha and beta coronaviruses and their bin...
Autores principales: | Gonzalez-Isunza, Georgina, Jawaid, M. Zaki, Liu, Pengyu, Cox, Daniel L., Vazquez, Mariel, Arsuaga, Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248971/ https://www.ncbi.nlm.nih.gov/pubmed/37291260 http://dx.doi.org/10.1038/s41598-023-35861-7 |
Ejemplares similares
-
Quantitative Study of the Chiral Organization of the Phage Genome Induced by the Packaging Motor
por: Cruz, Brian, et al.
Publicado: (2020) -
Current theoretical models fail to predict the topological complexity of the human genome
por: Arsuaga, Javier, et al.
Publicado: (2015) -
The Rabl configuration limits topological entanglement of chromosomes in budding yeast
por: Pouokam, Maxime, et al.
Publicado: (2019) -
Review on machine and deep learning models for the detection and prediction of Coronavirus
por: Waleed Salehi, Ahmad, et al.
Publicado: (2020) -
Identification of Copy Number Aberrations in Breast Cancer Subtypes Using Persistence Topology
por: Arsuaga, Javier, et al.
Publicado: (2015)