Cargando…

The relationship between pepsinogen C and gastric carcinogenesis: a transgene and population study

BACKGROUND: Pepsinogen C (PGC) is expressed in chief cells, fundic mucous neck cells, and pyloric gland cells of gastric epithelium and also in breast, prostate, lung, and seminal vesicles. METHODS: We explored the clinicopathological and prognostic significances of PGC mRNA using pathological and b...

Descripción completa

Detalles Bibliográficos
Autores principales: E., Ying, Yu, Qian, Sun, Tao, Xue, Hang, Zhao, Xue-rong, Zheng, Hua-chuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249301/
https://www.ncbi.nlm.nih.gov/pubmed/37291517
http://dx.doi.org/10.1186/s12885-023-11020-z
Descripción
Sumario:BACKGROUND: Pepsinogen C (PGC) is expressed in chief cells, fundic mucous neck cells, and pyloric gland cells of gastric epithelium and also in breast, prostate, lung, and seminal vesicles. METHODS: We explored the clinicopathological and prognostic significances of PGC mRNA using pathological and bioinformatics analyses. We generated PGC knockout and PGC-cre transgenic mice to observe the effects of PGC deletion and PTEN abrogation in PGC-positive cells on gastric carcinogenesis. Finally, we observed the effects of altered PGC expression on aggressive phenotypes by CCK8, Annexin V staining, wound healing and transwell assays and analyzed the partner proteins of PGC using co-IP (co-immunoprecipitation) and double fluorescence staining. RESULTS: PGC mRNA level was inversely correlated with the T and G stage and a short survival of gastric cancer (p < 0.05). PGC protein expression was negatively linked to lymph node metastasis, dedifferentiation, and low Her-2 expression of gastric cancer (p < 0.05). No difference in body weight or length was evident between wild-type (WT) and PGC knockout (KO) mice (p > 0.05), but PGC KO mice had a shorter survival than WT mice (p < 0.05). No gastric lesions were observed in the mucosa of the granular stomach in PGC KO mice, which displayed lower frequency and severity of gastric lesion than in WT mice after treated with MNU. Transgenic PGC-cre mice showed high cre expression and activity in the lung, stomach, kidney, and breast. Gastric cancer and triple-negative lobular breast adenocarcinoma were found in PGC-cre/PTEN(f/f) mice with two previous pregnancies and breast feeding, but breast cancer was not seen in transgenic mice exposed to either estrogen or progesterone, or those with two previous pregnancies and no breast feeding. PGC suppressed proliferation, migration, invasion, and induced apoptosis, and interacted with CCNT1, CNDP2 and CTSB. CONCLUSION: PGC downregulation was seen in gastric cancer, but PGC deletion resulted in resistance to chemically-induced gastric carcinogenesis. PGC expression suppressed the proliferation and invasion of gastric cancer cells possibly by interacting with CCNT1, CNDP2 and CTSB. Spontaneous triple-negative lobular adenocarcinoma and gastric cancer were seen in PGC-cre/PTEN(f/f) mice, and the breast carcinogenesis was closely linked to pregnancy and breast feeding, but not to single exposure to estrogen or progesterone, or pregnancy. Limiting either pregnancy or breast feeding might help to prevent hereditary breast cancer. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12885-023-11020-z.