Cargando…
Prediction model for day 3 embryo implantation potential based on metabolites in spent embryo culture medium
BACKGROUND: Metabolites in spent embryo culture medium correlate with the embryo’s viability. However, there is no widely accepted method using metabolite dada to predict successful implantation. We sought to combine metabolomic profiling of spent embryo culture medium and clinical variables to crea...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249307/ https://www.ncbi.nlm.nih.gov/pubmed/37291503 http://dx.doi.org/10.1186/s12884-023-05666-7 |
Sumario: | BACKGROUND: Metabolites in spent embryo culture medium correlate with the embryo’s viability. However, there is no widely accepted method using metabolite dada to predict successful implantation. We sought to combine metabolomic profiling of spent embryo culture medium and clinical variables to create an implantation prediction model as an adjunct to morphological screening of day 3 embryos. METHODS: This investigation was a prospective, nested case-control study. Forty-two day 3 embryos from 34 patients were transferred, and the spent embryo culture medium was collected. Twenty-two embryos implanted successfully, and the others failed. Metabolites in the medium relevant to implantation were detected and measured by Liquid Chromatography-Mass Spectrometry. Clinical signatures relevant to embryo implantation were subjected to univariate analysis to select candidates for a prediction model. Multivariate logistical regression of the clinical and metabolomic candidates was used to construct a prediction model for embryo implantation potential. RESULTS: The levels of 13 metabolites were significantly different between the successful and failed groups, among which five were most relevant and interpretable selected by Least Absolute Shrinkage and Selection Operator regression analysis. None of the clinical variables significantly affected day 3 embryo implantation. The most relevant and interpretable set of metabolites was used to construct a prediction model for day 3 embryo implantation potential with an accuracy of 0.88. CONCLUSIONS: Day 3 embryos’implantation potential could be noninvasively predicted by the spent embryo culture medium’s metabolites measured by LC-MS. This approach may become a useful adjunct to morphological evaluation of day 3 embryos. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12884-023-05666-7. |
---|