Cargando…
Catalytic Hydrothermal Deoxygenation of Stearic Acid with Ru/C: Effects of Alcohol- and Carboxylic Acid-Based Hydrogen Donors
[Image: see text] Catalytic hydrothermal processing is a promising technology for the production of biofuels used in transportation to alleviate the energy crisis. An important challenge for these processes is the need for an external supply of hydrogen gas to accelerate the deoxygenation of fatty a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249376/ https://www.ncbi.nlm.nih.gov/pubmed/37305242 http://dx.doi.org/10.1021/acsomega.3c01975 |
Sumario: | [Image: see text] Catalytic hydrothermal processing is a promising technology for the production of biofuels used in transportation to alleviate the energy crisis. An important challenge for these processes is the need for an external supply of hydrogen gas to accelerate the deoxygenation of fatty acids or lipids. It follows that in situ-produced hydrogen can improve process economics. This study reports on the use of various alcohol and carboxylic acid amendments as sources for in situ hydrogen production to accelerate Ru/C-catalyzed hydrothermal deoxygenation of stearic acid. Addition of these amendments significantly increases yields of liquid hydrocarbon products, including the major product heptadecane, from stearic acid conversion at subcritical conditions (330 °C, 14–16 MPa during the reaction). This research provided guidance for simplifying the catalytic hydrothermal process of biofuel production, making the production of the desired biofuel in one pot possible without the need for an external H(2) supply. |
---|