Cargando…
Machine Learning and Informatics Based Elucidation of Reaction Pathways for Upcycling Model Polyolefin to Aromatics
[Image: see text] Catalytic upcycling of plastics results in a complex network of potentially thousands of reactions and intermediates. Manual analysis of such a network using ab initio methods to identify plausible reaction pathways and rate-controlling steps is intractable. Here, we combine inform...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249406/ https://www.ncbi.nlm.nih.gov/pubmed/36975726 http://dx.doi.org/10.1021/acs.jpca.3c01444 |
Sumario: | [Image: see text] Catalytic upcycling of plastics results in a complex network of potentially thousands of reactions and intermediates. Manual analysis of such a network using ab initio methods to identify plausible reaction pathways and rate-controlling steps is intractable. Here, we combine informatics-based reaction network generation and machine learning based thermochemistry calculation to identify plausible (nonelementary step) pathways involved in dehydroaromatization of a model polyolefin, n-decane, to form aromatic products. All 78 aromatic molecules found involve a sequence comprising dehydrogenation, β-scission, and cyclization steps (in slightly different order). The plausible flux-carrying pathway depends on the family of reactions that is rate-controlling while the thermodynamic bottleneck is the first dehydrogenation step of n-decane. The adopted workflow is system agnostic and can be applied to understand the overall thermochemistry of other upcycling systems. |
---|