Cargando…
Developing interpretable machine learning-Shapley additive explanations model for unconfined compressive strength of cohesive soils stabilized with geopolymer
This paper seeks to develop an interpretable Machine Learning (ML) model for predicting the unconfined compressive strength (UCS) of cohesive soils stabilized with geopolymer at 28 days. Four models including Random Forest (RF), Artificial Neuron Network (ANN), Extreme Gradient Boosting (XGB), and G...
Autores principales: | Ngo, Anh Quan, Nguyen, Linh Quy, Tran, Van Quan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249854/ https://www.ncbi.nlm.nih.gov/pubmed/37289821 http://dx.doi.org/10.1371/journal.pone.0286950 |
Ejemplares similares
-
Experimental Investigation of Unconfined Compression Strength and Microstructure Characteristics of Slag and Fly Ash-Based Geopolymer Stabilized Riverside Soft Soil
por: Luo, Zhengdong, et al.
Publicado: (2022) -
An artificial neural network−pharmacokinetic model and its interpretation using Shapley additive explanations
por: Ogami, Chika, et al.
Publicado: (2021) -
Interpretable machine learning with tree-based shapley additive explanations: Application to metabolomics datasets for binary classification
por: Bifarin, Olatomiwa O.
Publicado: (2023) -
Proportionality between powder cohesion and unconfined yield strength from shear cell testing
por: Sun, David J., et al.
Publicado: (2019) -
Combined Effect of Biopolymer and Fiber Inclusions on Unconfined Compressive Strength of Soft Soil
por: Chen, Chunhui, et al.
Publicado: (2022)