Cargando…
Enabling interpretable machine learning for biological data with reliability scores
Machine learning tools have proven useful across biological disciplines, allowing researchers to draw conclusions from large datasets, and opening up new opportunities for interpreting complex and heterogeneous biological data. Alongside the rapid growth of machine learning, there have also been gro...
Autores principales: | Ahlquist, K. D., Sugden, Lauren A., Ramachandran, Sohini |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249903/ https://www.ncbi.nlm.nih.gov/pubmed/37235578 http://dx.doi.org/10.1371/journal.pcbi.1011175 |
Ejemplares similares
-
Interpretable machine learning methods for predictions in systems biology from omics data
por: Sidak, David, et al.
Publicado: (2022) -
Learning biologically-interpretable latent representations for gene expression data: Pathway Activity Score Learning Algorithm
por: Karagiannaki, Ioulia, et al.
Publicado: (2022) -
Machine learning enables interpretable discovery of innovative polymers for gas separation membranes
por: Yang, Jason, et al.
Publicado: (2022) -
Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data
por: Fortelny, Nikolaus, et al.
Publicado: (2020) -
AutoScore-Ordinal: an interpretable machine learning framework for generating scoring models for ordinal outcomes
por: Saffari, Seyed Ehsan, et al.
Publicado: (2022)