Cargando…
Discovery and characterization of novel Cre-type tyrosine site-specific recombinases for advanced genome engineering
Tyrosine-type site-specific recombinases (Y-SSRs) are versatile tools for genome engineering due to their ability to mediate excision, integration, inversion and exchange of genomic DNA with single nucleotide precision. The ever-increasing need for sophisticated genome engineering is driving efforts...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250229/ https://www.ncbi.nlm.nih.gov/pubmed/37158248 http://dx.doi.org/10.1093/nar/gkad366 |
Sumario: | Tyrosine-type site-specific recombinases (Y-SSRs) are versatile tools for genome engineering due to their ability to mediate excision, integration, inversion and exchange of genomic DNA with single nucleotide precision. The ever-increasing need for sophisticated genome engineering is driving efforts to identify novel SSR systems with intrinsic properties more suitable for particular applications. In this work, we develop a systematic computational workflow for annotation of putative Y-SSR systems and apply this pipeline to identify and characterize eight new naturally occurring Cre-type SSR systems. We test their activity in bacterial and mammalian cells and establish selectivity profiles for the new and already established Cre-type SSRs with regard to their ability to mutually recombine their target sites. These data form the basis for sophisticated genome engineering experiments using combinations of Y-SSRs in research fields including advanced genomics and synthetic biology. Finally, we identify putative pseudo-sites and potential off-targets for Y-SSRs in the human and mouse genome. Together with established methods for altering the DNA-binding specificity of this class of enzymes, this work should facilitate the use of Y-SSRs for future genome surgery applications. |
---|