Cargando…

Inferring ligand-receptor cellular networks from bulk and spatial transcriptomic datasets with BulkSignalR

The study of cellular networks mediated by ligand-receptor interactions has attracted much attention recently owing to single-cell omics. However, rich collections of bulk data accompanied with clinical information exists and continue to be generated with no equivalent in single-cell so far. In para...

Descripción completa

Detalles Bibliográficos
Autores principales: Villemin, Jean-Philippe, Bassaganyas, Laia, Pourquier, Didier, Boissière, Florence, Cabello-Aguilar, Simon, Crapez, Evelyne, Tanos, Rita, Cornillot, Emmanuel, Turtoi, Andrei, Colinge, Jacques
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250239/
https://www.ncbi.nlm.nih.gov/pubmed/37144485
http://dx.doi.org/10.1093/nar/gkad352
_version_ 1785055713533362176
author Villemin, Jean-Philippe
Bassaganyas, Laia
Pourquier, Didier
Boissière, Florence
Cabello-Aguilar, Simon
Crapez, Evelyne
Tanos, Rita
Cornillot, Emmanuel
Turtoi, Andrei
Colinge, Jacques
author_facet Villemin, Jean-Philippe
Bassaganyas, Laia
Pourquier, Didier
Boissière, Florence
Cabello-Aguilar, Simon
Crapez, Evelyne
Tanos, Rita
Cornillot, Emmanuel
Turtoi, Andrei
Colinge, Jacques
author_sort Villemin, Jean-Philippe
collection PubMed
description The study of cellular networks mediated by ligand-receptor interactions has attracted much attention recently owing to single-cell omics. However, rich collections of bulk data accompanied with clinical information exists and continue to be generated with no equivalent in single-cell so far. In parallel, spatial transcriptomic (ST) analyses represent a revolutionary tool in biology. A large number of ST projects rely on multicellular resolution, for instance the Visium™ platform, where several cells are analyzed at each location, thus producing localized bulk data. Here, we describe BulkSignalR, a R package to infer ligand-receptor networks from bulk data. BulkSignalR integrates ligand-receptor interactions with downstream pathways to estimate statistical significance. A range of visualization methods complement the statistics, including functions dedicated to spatial data. We demonstrate BulkSignalR relevance using different datasets, including new Visium liver metastasis ST data, with experimental validation of protein colocalization. A comparison with other ST packages shows the significantly higher quality of BulkSignalR inferences. BulkSignalR can be applied to any species thanks to its built-in generic ortholog mapping functionality.
format Online
Article
Text
id pubmed-10250239
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-102502392023-06-10 Inferring ligand-receptor cellular networks from bulk and spatial transcriptomic datasets with BulkSignalR Villemin, Jean-Philippe Bassaganyas, Laia Pourquier, Didier Boissière, Florence Cabello-Aguilar, Simon Crapez, Evelyne Tanos, Rita Cornillot, Emmanuel Turtoi, Andrei Colinge, Jacques Nucleic Acids Res Computational Biology The study of cellular networks mediated by ligand-receptor interactions has attracted much attention recently owing to single-cell omics. However, rich collections of bulk data accompanied with clinical information exists and continue to be generated with no equivalent in single-cell so far. In parallel, spatial transcriptomic (ST) analyses represent a revolutionary tool in biology. A large number of ST projects rely on multicellular resolution, for instance the Visium™ platform, where several cells are analyzed at each location, thus producing localized bulk data. Here, we describe BulkSignalR, a R package to infer ligand-receptor networks from bulk data. BulkSignalR integrates ligand-receptor interactions with downstream pathways to estimate statistical significance. A range of visualization methods complement the statistics, including functions dedicated to spatial data. We demonstrate BulkSignalR relevance using different datasets, including new Visium liver metastasis ST data, with experimental validation of protein colocalization. A comparison with other ST packages shows the significantly higher quality of BulkSignalR inferences. BulkSignalR can be applied to any species thanks to its built-in generic ortholog mapping functionality. Oxford University Press 2023-05-05 /pmc/articles/PMC10250239/ /pubmed/37144485 http://dx.doi.org/10.1093/nar/gkad352 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Computational Biology
Villemin, Jean-Philippe
Bassaganyas, Laia
Pourquier, Didier
Boissière, Florence
Cabello-Aguilar, Simon
Crapez, Evelyne
Tanos, Rita
Cornillot, Emmanuel
Turtoi, Andrei
Colinge, Jacques
Inferring ligand-receptor cellular networks from bulk and spatial transcriptomic datasets with BulkSignalR
title Inferring ligand-receptor cellular networks from bulk and spatial transcriptomic datasets with BulkSignalR
title_full Inferring ligand-receptor cellular networks from bulk and spatial transcriptomic datasets with BulkSignalR
title_fullStr Inferring ligand-receptor cellular networks from bulk and spatial transcriptomic datasets with BulkSignalR
title_full_unstemmed Inferring ligand-receptor cellular networks from bulk and spatial transcriptomic datasets with BulkSignalR
title_short Inferring ligand-receptor cellular networks from bulk and spatial transcriptomic datasets with BulkSignalR
title_sort inferring ligand-receptor cellular networks from bulk and spatial transcriptomic datasets with bulksignalr
topic Computational Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250239/
https://www.ncbi.nlm.nih.gov/pubmed/37144485
http://dx.doi.org/10.1093/nar/gkad352
work_keys_str_mv AT villeminjeanphilippe inferringligandreceptorcellularnetworksfrombulkandspatialtranscriptomicdatasetswithbulksignalr
AT bassaganyaslaia inferringligandreceptorcellularnetworksfrombulkandspatialtranscriptomicdatasetswithbulksignalr
AT pourquierdidier inferringligandreceptorcellularnetworksfrombulkandspatialtranscriptomicdatasetswithbulksignalr
AT boissiereflorence inferringligandreceptorcellularnetworksfrombulkandspatialtranscriptomicdatasetswithbulksignalr
AT cabelloaguilarsimon inferringligandreceptorcellularnetworksfrombulkandspatialtranscriptomicdatasetswithbulksignalr
AT crapezevelyne inferringligandreceptorcellularnetworksfrombulkandspatialtranscriptomicdatasetswithbulksignalr
AT tanosrita inferringligandreceptorcellularnetworksfrombulkandspatialtranscriptomicdatasetswithbulksignalr
AT cornillotemmanuel inferringligandreceptorcellularnetworksfrombulkandspatialtranscriptomicdatasetswithbulksignalr
AT turtoiandrei inferringligandreceptorcellularnetworksfrombulkandspatialtranscriptomicdatasetswithbulksignalr
AT colingejacques inferringligandreceptorcellularnetworksfrombulkandspatialtranscriptomicdatasetswithbulksignalr