Cargando…
Tailoring recommendation algorithms to ideal preferences makes users better off
People often struggle to do what they ideally want because of a conflict between their actual and ideal preferences. By focusing on maximizing engagement, recommendation algorithms appear to be exacerbating this struggle. However, this need not be the case. Here we show that tailoring recommendat...
Autores principales: | Khambatta, Poruz, Mariadassou, Shwetha, Morris, Joshua, Wheeler, S. Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250302/ https://www.ncbi.nlm.nih.gov/pubmed/37291232 http://dx.doi.org/10.1038/s41598-023-34192-x |
Ejemplares similares
-
A Ranking Recommendation Algorithm Based on Dynamic User Preference
por: Wei, Chunting, et al.
Publicado: (2022) -
Tailoring study design to each stage of surgical innovation: the ideal recommendations
por: Hirst, Allison, et al.
Publicado: (2013) -
Adaptive genetic algorithm for user preference discovery in multi-criteria recommender systems
por: Wasid, Mohammed, et al.
Publicado: (2023) -
Personalized Recommendation Algorithm for Movie Data Combining Rating Matrix and User Subjective Preference
por: Liu, Chang
Publicado: (2022) -
Ideals, varieties, and algorithms
por: Cox, David, et al.
Publicado: (1997)