Cargando…
Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range
Magnetic resonance imaging (MRI) is a non-invasive neuroimaging technique that is useful for identifying normal developmental and aging processes and for data sharing. Marmosets have a relatively shorter life expectancy than other primates, including humans, because they grow and age faster. Therefo...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250358/ https://www.ncbi.nlm.nih.gov/pubmed/37105968 http://dx.doi.org/10.1038/s41597-023-02121-2 |
_version_ | 1785055739401732096 |
---|---|
author | Hata, Junichi Nakae, Ken Tsukada, Hiromichi Woodward, Alexander Haga, Yawara Iida, Mayu Uematsu, Akiko Seki, Fumiko Ichinohe, Noritaka Gong, Rui Kaneko, Takaaki Yoshimaru, Daisuke Watakabe, Akiya Abe, Hiroshi Tani, Toshiki Hamda, Hiro Taiyo Gutierrez, Carlos Enrique Skibbe, Henrik Maeda, Masahide Papazian, Frederic Hagiya, Kei Kishi, Noriyuki Ishii, Shin Doya, Kenji Shimogori, Tomomi Yamamori, Tetsuo Tanaka, Keiji Okano, Hirotaka James Okano, Hideyuki |
author_facet | Hata, Junichi Nakae, Ken Tsukada, Hiromichi Woodward, Alexander Haga, Yawara Iida, Mayu Uematsu, Akiko Seki, Fumiko Ichinohe, Noritaka Gong, Rui Kaneko, Takaaki Yoshimaru, Daisuke Watakabe, Akiya Abe, Hiroshi Tani, Toshiki Hamda, Hiro Taiyo Gutierrez, Carlos Enrique Skibbe, Henrik Maeda, Masahide Papazian, Frederic Hagiya, Kei Kishi, Noriyuki Ishii, Shin Doya, Kenji Shimogori, Tomomi Yamamori, Tetsuo Tanaka, Keiji Okano, Hirotaka James Okano, Hideyuki |
author_sort | Hata, Junichi |
collection | PubMed |
description | Magnetic resonance imaging (MRI) is a non-invasive neuroimaging technique that is useful for identifying normal developmental and aging processes and for data sharing. Marmosets have a relatively shorter life expectancy than other primates, including humans, because they grow and age faster. Therefore, the common marmoset model is effective in aging research. The current study investigated the aging process of the marmoset brain and provided an open MRI database of marmosets across a wide age range. The Brain/MINDS Marmoset Brain MRI Dataset contains brain MRI information from 216 marmosets ranging in age from 1 and 10 years. At the time of its release, it is the largest public dataset in the world. It also includes multi-contrast MRI images. In addition, 91 of 216 animals have corresponding high-resolution ex vivo MRI datasets. Our MRI database, available at the Brain/MINDS Data Portal, might help to understand the effects of various factors, such as age, sex, body size, and fixation, on the brain. It can also contribute to and accelerate brain science studies worldwide. |
format | Online Article Text |
id | pubmed-10250358 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-102503582023-06-10 Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range Hata, Junichi Nakae, Ken Tsukada, Hiromichi Woodward, Alexander Haga, Yawara Iida, Mayu Uematsu, Akiko Seki, Fumiko Ichinohe, Noritaka Gong, Rui Kaneko, Takaaki Yoshimaru, Daisuke Watakabe, Akiya Abe, Hiroshi Tani, Toshiki Hamda, Hiro Taiyo Gutierrez, Carlos Enrique Skibbe, Henrik Maeda, Masahide Papazian, Frederic Hagiya, Kei Kishi, Noriyuki Ishii, Shin Doya, Kenji Shimogori, Tomomi Yamamori, Tetsuo Tanaka, Keiji Okano, Hirotaka James Okano, Hideyuki Sci Data Data Descriptor Magnetic resonance imaging (MRI) is a non-invasive neuroimaging technique that is useful for identifying normal developmental and aging processes and for data sharing. Marmosets have a relatively shorter life expectancy than other primates, including humans, because they grow and age faster. Therefore, the common marmoset model is effective in aging research. The current study investigated the aging process of the marmoset brain and provided an open MRI database of marmosets across a wide age range. The Brain/MINDS Marmoset Brain MRI Dataset contains brain MRI information from 216 marmosets ranging in age from 1 and 10 years. At the time of its release, it is the largest public dataset in the world. It also includes multi-contrast MRI images. In addition, 91 of 216 animals have corresponding high-resolution ex vivo MRI datasets. Our MRI database, available at the Brain/MINDS Data Portal, might help to understand the effects of various factors, such as age, sex, body size, and fixation, on the brain. It can also contribute to and accelerate brain science studies worldwide. Nature Publishing Group UK 2023-04-27 /pmc/articles/PMC10250358/ /pubmed/37105968 http://dx.doi.org/10.1038/s41597-023-02121-2 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Data Descriptor Hata, Junichi Nakae, Ken Tsukada, Hiromichi Woodward, Alexander Haga, Yawara Iida, Mayu Uematsu, Akiko Seki, Fumiko Ichinohe, Noritaka Gong, Rui Kaneko, Takaaki Yoshimaru, Daisuke Watakabe, Akiya Abe, Hiroshi Tani, Toshiki Hamda, Hiro Taiyo Gutierrez, Carlos Enrique Skibbe, Henrik Maeda, Masahide Papazian, Frederic Hagiya, Kei Kishi, Noriyuki Ishii, Shin Doya, Kenji Shimogori, Tomomi Yamamori, Tetsuo Tanaka, Keiji Okano, Hirotaka James Okano, Hideyuki Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range |
title | Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range |
title_full | Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range |
title_fullStr | Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range |
title_full_unstemmed | Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range |
title_short | Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range |
title_sort | multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range |
topic | Data Descriptor |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250358/ https://www.ncbi.nlm.nih.gov/pubmed/37105968 http://dx.doi.org/10.1038/s41597-023-02121-2 |
work_keys_str_mv | AT hatajunichi multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT nakaeken multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT tsukadahiromichi multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT woodwardalexander multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT hagayawara multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT iidamayu multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT uematsuakiko multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT sekifumiko multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT ichinohenoritaka multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT gongrui multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT kanekotakaaki multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT yoshimarudaisuke multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT watakabeakiya multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT abehiroshi multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT tanitoshiki multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT hamdahirotaiyo multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT gutierrezcarlosenrique multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT skibbehenrik multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT maedamasahide multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT papazianfrederic multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT hagiyakei multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT kishinoriyuki multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT ishiishin multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT doyakenji multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT shimogoritomomi multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT yamamoritetsuo multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT tanakakeiji multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT okanohirotakajames multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange AT okanohideyuki multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange |