Cargando…

Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range

Magnetic resonance imaging (MRI) is a non-invasive neuroimaging technique that is useful for identifying normal developmental and aging processes and for data sharing. Marmosets have a relatively shorter life expectancy than other primates, including humans, because they grow and age faster. Therefo...

Descripción completa

Detalles Bibliográficos
Autores principales: Hata, Junichi, Nakae, Ken, Tsukada, Hiromichi, Woodward, Alexander, Haga, Yawara, Iida, Mayu, Uematsu, Akiko, Seki, Fumiko, Ichinohe, Noritaka, Gong, Rui, Kaneko, Takaaki, Yoshimaru, Daisuke, Watakabe, Akiya, Abe, Hiroshi, Tani, Toshiki, Hamda, Hiro Taiyo, Gutierrez, Carlos Enrique, Skibbe, Henrik, Maeda, Masahide, Papazian, Frederic, Hagiya, Kei, Kishi, Noriyuki, Ishii, Shin, Doya, Kenji, Shimogori, Tomomi, Yamamori, Tetsuo, Tanaka, Keiji, Okano, Hirotaka James, Okano, Hideyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250358/
https://www.ncbi.nlm.nih.gov/pubmed/37105968
http://dx.doi.org/10.1038/s41597-023-02121-2
_version_ 1785055739401732096
author Hata, Junichi
Nakae, Ken
Tsukada, Hiromichi
Woodward, Alexander
Haga, Yawara
Iida, Mayu
Uematsu, Akiko
Seki, Fumiko
Ichinohe, Noritaka
Gong, Rui
Kaneko, Takaaki
Yoshimaru, Daisuke
Watakabe, Akiya
Abe, Hiroshi
Tani, Toshiki
Hamda, Hiro Taiyo
Gutierrez, Carlos Enrique
Skibbe, Henrik
Maeda, Masahide
Papazian, Frederic
Hagiya, Kei
Kishi, Noriyuki
Ishii, Shin
Doya, Kenji
Shimogori, Tomomi
Yamamori, Tetsuo
Tanaka, Keiji
Okano, Hirotaka James
Okano, Hideyuki
author_facet Hata, Junichi
Nakae, Ken
Tsukada, Hiromichi
Woodward, Alexander
Haga, Yawara
Iida, Mayu
Uematsu, Akiko
Seki, Fumiko
Ichinohe, Noritaka
Gong, Rui
Kaneko, Takaaki
Yoshimaru, Daisuke
Watakabe, Akiya
Abe, Hiroshi
Tani, Toshiki
Hamda, Hiro Taiyo
Gutierrez, Carlos Enrique
Skibbe, Henrik
Maeda, Masahide
Papazian, Frederic
Hagiya, Kei
Kishi, Noriyuki
Ishii, Shin
Doya, Kenji
Shimogori, Tomomi
Yamamori, Tetsuo
Tanaka, Keiji
Okano, Hirotaka James
Okano, Hideyuki
author_sort Hata, Junichi
collection PubMed
description Magnetic resonance imaging (MRI) is a non-invasive neuroimaging technique that is useful for identifying normal developmental and aging processes and for data sharing. Marmosets have a relatively shorter life expectancy than other primates, including humans, because they grow and age faster. Therefore, the common marmoset model is effective in aging research. The current study investigated the aging process of the marmoset brain and provided an open MRI database of marmosets across a wide age range. The Brain/MINDS Marmoset Brain MRI Dataset contains brain MRI information from 216 marmosets ranging in age from 1 and 10 years. At the time of its release, it is the largest public dataset in the world. It also includes multi-contrast MRI images. In addition, 91 of 216 animals have corresponding high-resolution ex vivo MRI datasets. Our MRI database, available at the Brain/MINDS Data Portal, might help to understand the effects of various factors, such as age, sex, body size, and fixation, on the brain. It can also contribute to and accelerate brain science studies worldwide.
format Online
Article
Text
id pubmed-10250358
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-102503582023-06-10 Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range Hata, Junichi Nakae, Ken Tsukada, Hiromichi Woodward, Alexander Haga, Yawara Iida, Mayu Uematsu, Akiko Seki, Fumiko Ichinohe, Noritaka Gong, Rui Kaneko, Takaaki Yoshimaru, Daisuke Watakabe, Akiya Abe, Hiroshi Tani, Toshiki Hamda, Hiro Taiyo Gutierrez, Carlos Enrique Skibbe, Henrik Maeda, Masahide Papazian, Frederic Hagiya, Kei Kishi, Noriyuki Ishii, Shin Doya, Kenji Shimogori, Tomomi Yamamori, Tetsuo Tanaka, Keiji Okano, Hirotaka James Okano, Hideyuki Sci Data Data Descriptor Magnetic resonance imaging (MRI) is a non-invasive neuroimaging technique that is useful for identifying normal developmental and aging processes and for data sharing. Marmosets have a relatively shorter life expectancy than other primates, including humans, because they grow and age faster. Therefore, the common marmoset model is effective in aging research. The current study investigated the aging process of the marmoset brain and provided an open MRI database of marmosets across a wide age range. The Brain/MINDS Marmoset Brain MRI Dataset contains brain MRI information from 216 marmosets ranging in age from 1 and 10 years. At the time of its release, it is the largest public dataset in the world. It also includes multi-contrast MRI images. In addition, 91 of 216 animals have corresponding high-resolution ex vivo MRI datasets. Our MRI database, available at the Brain/MINDS Data Portal, might help to understand the effects of various factors, such as age, sex, body size, and fixation, on the brain. It can also contribute to and accelerate brain science studies worldwide. Nature Publishing Group UK 2023-04-27 /pmc/articles/PMC10250358/ /pubmed/37105968 http://dx.doi.org/10.1038/s41597-023-02121-2 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Data Descriptor
Hata, Junichi
Nakae, Ken
Tsukada, Hiromichi
Woodward, Alexander
Haga, Yawara
Iida, Mayu
Uematsu, Akiko
Seki, Fumiko
Ichinohe, Noritaka
Gong, Rui
Kaneko, Takaaki
Yoshimaru, Daisuke
Watakabe, Akiya
Abe, Hiroshi
Tani, Toshiki
Hamda, Hiro Taiyo
Gutierrez, Carlos Enrique
Skibbe, Henrik
Maeda, Masahide
Papazian, Frederic
Hagiya, Kei
Kishi, Noriyuki
Ishii, Shin
Doya, Kenji
Shimogori, Tomomi
Yamamori, Tetsuo
Tanaka, Keiji
Okano, Hirotaka James
Okano, Hideyuki
Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range
title Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range
title_full Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range
title_fullStr Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range
title_full_unstemmed Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range
title_short Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range
title_sort multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250358/
https://www.ncbi.nlm.nih.gov/pubmed/37105968
http://dx.doi.org/10.1038/s41597-023-02121-2
work_keys_str_mv AT hatajunichi multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT nakaeken multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT tsukadahiromichi multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT woodwardalexander multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT hagayawara multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT iidamayu multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT uematsuakiko multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT sekifumiko multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT ichinohenoritaka multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT gongrui multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT kanekotakaaki multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT yoshimarudaisuke multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT watakabeakiya multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT abehiroshi multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT tanitoshiki multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT hamdahirotaiyo multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT gutierrezcarlosenrique multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT skibbehenrik multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT maedamasahide multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT papazianfrederic multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT hagiyakei multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT kishinoriyuki multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT ishiishin multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT doyakenji multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT shimogoritomomi multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT yamamoritetsuo multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT tanakakeiji multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT okanohirotakajames multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange
AT okanohideyuki multimodalbrainmagneticresonanceimagingdatabasecoveringmarmosetswithawideagerange