Cargando…

Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing

Single-molecule localization microscopy techniques are emerging as vital tools to unravel the nanoscale world of living cells by understanding the spatiotemporal organization of protein clusters at the nanometer scale. Current analyses define spatial nanoclusters based on detections but neglect impo...

Descripción completa

Detalles Bibliográficos
Autores principales: Wallis, Tristan P., Jiang, Anmin, Young, Kyle, Hou, Huiyi, Kudo, Kye, McCann, Alex J., Durisic, Nela, Joensuu, Merja, Oelz, Dietmar, Nguyen, Hien, Gormal, Rachel S., Meunier, Frédéric A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250379/
https://www.ncbi.nlm.nih.gov/pubmed/37291117
http://dx.doi.org/10.1038/s41467-023-38866-y
_version_ 1785055743095865344
author Wallis, Tristan P.
Jiang, Anmin
Young, Kyle
Hou, Huiyi
Kudo, Kye
McCann, Alex J.
Durisic, Nela
Joensuu, Merja
Oelz, Dietmar
Nguyen, Hien
Gormal, Rachel S.
Meunier, Frédéric A.
author_facet Wallis, Tristan P.
Jiang, Anmin
Young, Kyle
Hou, Huiyi
Kudo, Kye
McCann, Alex J.
Durisic, Nela
Joensuu, Merja
Oelz, Dietmar
Nguyen, Hien
Gormal, Rachel S.
Meunier, Frédéric A.
author_sort Wallis, Tristan P.
collection PubMed
description Single-molecule localization microscopy techniques are emerging as vital tools to unravel the nanoscale world of living cells by understanding the spatiotemporal organization of protein clusters at the nanometer scale. Current analyses define spatial nanoclusters based on detections but neglect important temporal information such as cluster lifetime and recurrence in “hotspots” on the plasma membrane. Spatial indexing is widely used in video games to detect interactions between moving geometric objects. Here, we use the R-tree spatial indexing algorithm to determine the overlap of the bounding boxes of individual molecular trajectories to establish membership in nanoclusters. Extending the spatial indexing into the time dimension allows the resolution of spatial nanoclusters into multiple spatiotemporal clusters. Using spatiotemporal indexing, we found that syntaxin1a and Munc18-1 molecules transiently cluster in hotspots, offering insights into the dynamics of neuroexocytosis. Nanoscale spatiotemporal indexing clustering (NASTIC) has been implemented as a free and open-source Python graphic user interface.
format Online
Article
Text
id pubmed-10250379
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-102503792023-06-10 Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing Wallis, Tristan P. Jiang, Anmin Young, Kyle Hou, Huiyi Kudo, Kye McCann, Alex J. Durisic, Nela Joensuu, Merja Oelz, Dietmar Nguyen, Hien Gormal, Rachel S. Meunier, Frédéric A. Nat Commun Article Single-molecule localization microscopy techniques are emerging as vital tools to unravel the nanoscale world of living cells by understanding the spatiotemporal organization of protein clusters at the nanometer scale. Current analyses define spatial nanoclusters based on detections but neglect important temporal information such as cluster lifetime and recurrence in “hotspots” on the plasma membrane. Spatial indexing is widely used in video games to detect interactions between moving geometric objects. Here, we use the R-tree spatial indexing algorithm to determine the overlap of the bounding boxes of individual molecular trajectories to establish membership in nanoclusters. Extending the spatial indexing into the time dimension allows the resolution of spatial nanoclusters into multiple spatiotemporal clusters. Using spatiotemporal indexing, we found that syntaxin1a and Munc18-1 molecules transiently cluster in hotspots, offering insights into the dynamics of neuroexocytosis. Nanoscale spatiotemporal indexing clustering (NASTIC) has been implemented as a free and open-source Python graphic user interface. Nature Publishing Group UK 2023-06-08 /pmc/articles/PMC10250379/ /pubmed/37291117 http://dx.doi.org/10.1038/s41467-023-38866-y Text en © The Author(s) 2023, corrected publication 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Wallis, Tristan P.
Jiang, Anmin
Young, Kyle
Hou, Huiyi
Kudo, Kye
McCann, Alex J.
Durisic, Nela
Joensuu, Merja
Oelz, Dietmar
Nguyen, Hien
Gormal, Rachel S.
Meunier, Frédéric A.
Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing
title Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing
title_full Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing
title_fullStr Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing
title_full_unstemmed Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing
title_short Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing
title_sort super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250379/
https://www.ncbi.nlm.nih.gov/pubmed/37291117
http://dx.doi.org/10.1038/s41467-023-38866-y
work_keys_str_mv AT wallistristanp superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing
AT jianganmin superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing
AT youngkyle superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing
AT houhuiyi superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing
AT kudokye superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing
AT mccannalexj superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing
AT durisicnela superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing
AT joensuumerja superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing
AT oelzdietmar superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing
AT nguyenhien superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing
AT gormalrachels superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing
AT meunierfrederica superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing