Cargando…
Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing
Single-molecule localization microscopy techniques are emerging as vital tools to unravel the nanoscale world of living cells by understanding the spatiotemporal organization of protein clusters at the nanometer scale. Current analyses define spatial nanoclusters based on detections but neglect impo...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250379/ https://www.ncbi.nlm.nih.gov/pubmed/37291117 http://dx.doi.org/10.1038/s41467-023-38866-y |
_version_ | 1785055743095865344 |
---|---|
author | Wallis, Tristan P. Jiang, Anmin Young, Kyle Hou, Huiyi Kudo, Kye McCann, Alex J. Durisic, Nela Joensuu, Merja Oelz, Dietmar Nguyen, Hien Gormal, Rachel S. Meunier, Frédéric A. |
author_facet | Wallis, Tristan P. Jiang, Anmin Young, Kyle Hou, Huiyi Kudo, Kye McCann, Alex J. Durisic, Nela Joensuu, Merja Oelz, Dietmar Nguyen, Hien Gormal, Rachel S. Meunier, Frédéric A. |
author_sort | Wallis, Tristan P. |
collection | PubMed |
description | Single-molecule localization microscopy techniques are emerging as vital tools to unravel the nanoscale world of living cells by understanding the spatiotemporal organization of protein clusters at the nanometer scale. Current analyses define spatial nanoclusters based on detections but neglect important temporal information such as cluster lifetime and recurrence in “hotspots” on the plasma membrane. Spatial indexing is widely used in video games to detect interactions between moving geometric objects. Here, we use the R-tree spatial indexing algorithm to determine the overlap of the bounding boxes of individual molecular trajectories to establish membership in nanoclusters. Extending the spatial indexing into the time dimension allows the resolution of spatial nanoclusters into multiple spatiotemporal clusters. Using spatiotemporal indexing, we found that syntaxin1a and Munc18-1 molecules transiently cluster in hotspots, offering insights into the dynamics of neuroexocytosis. Nanoscale spatiotemporal indexing clustering (NASTIC) has been implemented as a free and open-source Python graphic user interface. |
format | Online Article Text |
id | pubmed-10250379 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-102503792023-06-10 Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing Wallis, Tristan P. Jiang, Anmin Young, Kyle Hou, Huiyi Kudo, Kye McCann, Alex J. Durisic, Nela Joensuu, Merja Oelz, Dietmar Nguyen, Hien Gormal, Rachel S. Meunier, Frédéric A. Nat Commun Article Single-molecule localization microscopy techniques are emerging as vital tools to unravel the nanoscale world of living cells by understanding the spatiotemporal organization of protein clusters at the nanometer scale. Current analyses define spatial nanoclusters based on detections but neglect important temporal information such as cluster lifetime and recurrence in “hotspots” on the plasma membrane. Spatial indexing is widely used in video games to detect interactions between moving geometric objects. Here, we use the R-tree spatial indexing algorithm to determine the overlap of the bounding boxes of individual molecular trajectories to establish membership in nanoclusters. Extending the spatial indexing into the time dimension allows the resolution of spatial nanoclusters into multiple spatiotemporal clusters. Using spatiotemporal indexing, we found that syntaxin1a and Munc18-1 molecules transiently cluster in hotspots, offering insights into the dynamics of neuroexocytosis. Nanoscale spatiotemporal indexing clustering (NASTIC) has been implemented as a free and open-source Python graphic user interface. Nature Publishing Group UK 2023-06-08 /pmc/articles/PMC10250379/ /pubmed/37291117 http://dx.doi.org/10.1038/s41467-023-38866-y Text en © The Author(s) 2023, corrected publication 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Wallis, Tristan P. Jiang, Anmin Young, Kyle Hou, Huiyi Kudo, Kye McCann, Alex J. Durisic, Nela Joensuu, Merja Oelz, Dietmar Nguyen, Hien Gormal, Rachel S. Meunier, Frédéric A. Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing |
title | Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing |
title_full | Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing |
title_fullStr | Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing |
title_full_unstemmed | Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing |
title_short | Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing |
title_sort | super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250379/ https://www.ncbi.nlm.nih.gov/pubmed/37291117 http://dx.doi.org/10.1038/s41467-023-38866-y |
work_keys_str_mv | AT wallistristanp superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing AT jianganmin superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing AT youngkyle superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing AT houhuiyi superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing AT kudokye superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing AT mccannalexj superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing AT durisicnela superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing AT joensuumerja superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing AT oelzdietmar superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing AT nguyenhien superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing AT gormalrachels superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing AT meunierfrederica superresolvedtrajectoryderivednanoclusteringanalysisusingspatiotemporalindexing |