Cargando…
The impact of ordinal scales on Gaussian mixture recovery
Gaussian mixture models (GMMs) are a popular and versatile tool for exploring heterogeneity in multivariate continuous data. Arguably the most popular way to estimate GMMs is via the expectation–maximization (EM) algorithm combined with model selection using the Bayesian information criterion (BIC)....
Autores principales: | Haslbeck, Jonas M. B., Vermunt, Jeroen K., Waldorp, Lourens J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250525/ https://www.ncbi.nlm.nih.gov/pubmed/35831565 http://dx.doi.org/10.3758/s13428-022-01883-8 |
Ejemplares similares
-
How well do network models predict observations? On the importance of predictability in network models
por: Haslbeck, Jonas M. B., et al.
Publicado: (2017) -
Mixtures of Conditional Gaussian Scale Mixtures Applied to Multiscale Image Representations
por: Theis, Lucas, et al.
Publicado: (2012) -
Robust and Unbiased Variance of GLM Coefficients for Misspecified Autocorrelation and Hemodynamic Response Models in fMRI
por: Waldorp, Lourens
Publicado: (2009) -
Spike sorting with Gaussian mixture models
por: Souza, Bryan C., et al.
Publicado: (2019) -
Making Large-Scale Networks from fMRI Data
por: Schmittmann, Verena D., et al.
Publicado: (2015)