Cargando…
A Bayesian approach to predictive uncertainty in chemotherapy patients at risk of acute care utilization
BACKGROUND: Machine learning (ML) predictions are becoming increasingly integrated into medical practice. One commonly used method, ℓ(1)-penalised logistic regression (LASSO), can estimate patient risk for disease outcomes but is limited by only providing point estimates. Instead, Bayesian logistic...
Autores principales: | Fanconi, Claudio, de Hond, Anne, Peterson, Dylan, Capodici, Angelo, Hernandez-Boussard, Tina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250586/ https://www.ncbi.nlm.nih.gov/pubmed/37269570 http://dx.doi.org/10.1016/j.ebiom.2023.104632 |
Ejemplares similares
-
Predict, diagnose, and treat chronic kidney disease with machine learning: a systematic literature review
por: Sanmarchi, Francesco, et al.
Publicado: (2023) -
Correction to: Predict, diagnose, and treat chronic kidney disease with machine learning: a systematic literature review
por: Sanmarchi, Francesco, et al.
Publicado: (2023) -
Bayesian approach to model uncertainty
por: Tsangarides, Charalambos G
Publicado: (2004) -
Machine Learning Applied to Electronic Health Records: Identification of Chemotherapy Patients at High Risk for Preventable Emergency Department Visits and Hospital Admissions
por: Peterson, Dylan J., et al.
Publicado: (2021) -
Perspectives on validation of clinical predictive algorithms
por: de Hond, Anne A. H., et al.
Publicado: (2023)