Cargando…
Helix encoder: a compound-protein interaction prediction model specifically designed for class A GPCRs
Class A G protein-coupled receptors (GPCRs) represent the largest class of GPCRs. They are essential targets of drug discovery and thus various computational approaches have been applied to predict their ligands. However, there are a large number of orphan receptors in class A GPCRs and it is diffic...
Autores principales: | Yamane, Haruki, Ishida, Takashi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250622/ https://www.ncbi.nlm.nih.gov/pubmed/37304403 http://dx.doi.org/10.3389/fbinf.2023.1193025 |
Ejemplares similares
-
Characterization of the basic helix–loop–helix gene family and its tissue-differential expression in response to salt stress in poplar
por: Zhao, Kai, et al.
Publicado: (2018) -
Predicting genetic interactions, cell line dependencies and drug sensitivities with variational graph auto-encoder
por: Gervits, Asia, et al.
Publicado: (2022) -
Image-based effective feature generation for protein structural class and ligand binding prediction
por: Sadique, Nafees, et al.
Publicado: (2020) -
Helix 8 is the essential structural motif of mechanosensitive GPCRs
por: Erdogmus, Serap, et al.
Publicado: (2019) -
Machine learning methods for protein-protein binding affinity prediction in protein design
por: Guo, Zhongliang, et al.
Publicado: (2022)