Cargando…
Navigating the bridge between wet and dry lab toxicology research to address current challenges with high-dimensional data
Toxicology research has rapidly evolved, leveraging increasingly advanced technologies in high-throughput approaches to yield important information on toxicological mechanisms and health outcomes. Data produced through toxicology studies are consequently becoming larger, often producing high-dimensi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250703/ https://www.ncbi.nlm.nih.gov/pubmed/37304253 http://dx.doi.org/10.3389/ftox.2023.1171175 |
_version_ | 1785055811663298560 |
---|---|
author | Payton, Alexis Roell, Kyle R. Rebuli, Meghan E. Valdar, William Jaspers, Ilona Rager, Julia E. |
author_facet | Payton, Alexis Roell, Kyle R. Rebuli, Meghan E. Valdar, William Jaspers, Ilona Rager, Julia E. |
author_sort | Payton, Alexis |
collection | PubMed |
description | Toxicology research has rapidly evolved, leveraging increasingly advanced technologies in high-throughput approaches to yield important information on toxicological mechanisms and health outcomes. Data produced through toxicology studies are consequently becoming larger, often producing high-dimensional data. These types of data hold promise for imparting new knowledge, yet inherently have complexities causing them to be a rate-limiting element for researchers, particularly those that are housed in “wet lab” settings (i.e., researchers that use liquids to analyze various chemicals and biomarkers as opposed to more computationally focused, “dry lab” researchers). These types of challenges represent topics of ongoing conversation amongst our team and researchers in the field. The aim of this perspective is to i) summarize hurdles in analyzing high-dimensional data in toxicology that require improved training and translation for wet lab researchers, ii) highlight example methods that have aided in translating data analysis techniques to wet lab researchers; and iii) describe challenges that remain to be effectively addressed, to date, in toxicology research. Specific aspects include methodologies that could be introduced to wet lab researchers, including data pre-processing, machine learning, and data reduction. Current challenges discussed include model interpretability, study biases, and data analysis training. Example efforts implemented to translate these data analysis techniques are also mentioned, including online data analysis resources and hands-on workshops. Questions are also posed to continue conversation in the toxicology community. Contents of this perspective represent timely issues broadly occurring in the fields of bioinformatics and toxicology that require ongoing dialogue between wet and dry lab researchers. |
format | Online Article Text |
id | pubmed-10250703 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102507032023-06-10 Navigating the bridge between wet and dry lab toxicology research to address current challenges with high-dimensional data Payton, Alexis Roell, Kyle R. Rebuli, Meghan E. Valdar, William Jaspers, Ilona Rager, Julia E. Front Toxicol Toxicology Toxicology research has rapidly evolved, leveraging increasingly advanced technologies in high-throughput approaches to yield important information on toxicological mechanisms and health outcomes. Data produced through toxicology studies are consequently becoming larger, often producing high-dimensional data. These types of data hold promise for imparting new knowledge, yet inherently have complexities causing them to be a rate-limiting element for researchers, particularly those that are housed in “wet lab” settings (i.e., researchers that use liquids to analyze various chemicals and biomarkers as opposed to more computationally focused, “dry lab” researchers). These types of challenges represent topics of ongoing conversation amongst our team and researchers in the field. The aim of this perspective is to i) summarize hurdles in analyzing high-dimensional data in toxicology that require improved training and translation for wet lab researchers, ii) highlight example methods that have aided in translating data analysis techniques to wet lab researchers; and iii) describe challenges that remain to be effectively addressed, to date, in toxicology research. Specific aspects include methodologies that could be introduced to wet lab researchers, including data pre-processing, machine learning, and data reduction. Current challenges discussed include model interpretability, study biases, and data analysis training. Example efforts implemented to translate these data analysis techniques are also mentioned, including online data analysis resources and hands-on workshops. Questions are also posed to continue conversation in the toxicology community. Contents of this perspective represent timely issues broadly occurring in the fields of bioinformatics and toxicology that require ongoing dialogue between wet and dry lab researchers. Frontiers Media S.A. 2023-05-26 /pmc/articles/PMC10250703/ /pubmed/37304253 http://dx.doi.org/10.3389/ftox.2023.1171175 Text en Copyright © 2023 Payton, Roell, Rebuli, Valdar, Jaspers and Rager. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Toxicology Payton, Alexis Roell, Kyle R. Rebuli, Meghan E. Valdar, William Jaspers, Ilona Rager, Julia E. Navigating the bridge between wet and dry lab toxicology research to address current challenges with high-dimensional data |
title | Navigating the bridge between wet and dry lab toxicology research to address current challenges with high-dimensional data |
title_full | Navigating the bridge between wet and dry lab toxicology research to address current challenges with high-dimensional data |
title_fullStr | Navigating the bridge between wet and dry lab toxicology research to address current challenges with high-dimensional data |
title_full_unstemmed | Navigating the bridge between wet and dry lab toxicology research to address current challenges with high-dimensional data |
title_short | Navigating the bridge between wet and dry lab toxicology research to address current challenges with high-dimensional data |
title_sort | navigating the bridge between wet and dry lab toxicology research to address current challenges with high-dimensional data |
topic | Toxicology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250703/ https://www.ncbi.nlm.nih.gov/pubmed/37304253 http://dx.doi.org/10.3389/ftox.2023.1171175 |
work_keys_str_mv | AT paytonalexis navigatingthebridgebetweenwetanddrylabtoxicologyresearchtoaddresscurrentchallengeswithhighdimensionaldata AT roellkyler navigatingthebridgebetweenwetanddrylabtoxicologyresearchtoaddresscurrentchallengeswithhighdimensionaldata AT rebulimeghane navigatingthebridgebetweenwetanddrylabtoxicologyresearchtoaddresscurrentchallengeswithhighdimensionaldata AT valdarwilliam navigatingthebridgebetweenwetanddrylabtoxicologyresearchtoaddresscurrentchallengeswithhighdimensionaldata AT jaspersilona navigatingthebridgebetweenwetanddrylabtoxicologyresearchtoaddresscurrentchallengeswithhighdimensionaldata AT ragerjuliae navigatingthebridgebetweenwetanddrylabtoxicologyresearchtoaddresscurrentchallengeswithhighdimensionaldata |