Cargando…

Quantification of PEFC Catalyst Layer Saturation via In Silico, Ex Situ, and In Situ Small-Angle X-ray Scattering

[Image: see text] The complex nature of liquid water saturation of polymer electrolyte fuel cell (PEFC) catalyst layers (CLs) greatly affects the device performance. To investigate this problem, we present a method to quantify the presence of liquid water in a PEFC CL using small-angle X-ray scatter...

Descripción completa

Detalles Bibliográficos
Autores principales: Aliyah, Kinanti, Prehal, Christian, Diercks, Justus S., Diklić, Nataša, Xu, Linfeng, Ünsal, Seçil, Appel, Christian, Pauw, Brian R., Smales, Glen J., Guizar-Sicairos, Manuel, Herranz, Juan, Gubler, Lorenz, Büchi, Felix N., Eller, Jens
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10251350/
https://www.ncbi.nlm.nih.gov/pubmed/37229747
http://dx.doi.org/10.1021/acsami.3c00420
_version_ 1785055928757780480
author Aliyah, Kinanti
Prehal, Christian
Diercks, Justus S.
Diklić, Nataša
Xu, Linfeng
Ünsal, Seçil
Appel, Christian
Pauw, Brian R.
Smales, Glen J.
Guizar-Sicairos, Manuel
Herranz, Juan
Gubler, Lorenz
Büchi, Felix N.
Eller, Jens
author_facet Aliyah, Kinanti
Prehal, Christian
Diercks, Justus S.
Diklić, Nataša
Xu, Linfeng
Ünsal, Seçil
Appel, Christian
Pauw, Brian R.
Smales, Glen J.
Guizar-Sicairos, Manuel
Herranz, Juan
Gubler, Lorenz
Büchi, Felix N.
Eller, Jens
author_sort Aliyah, Kinanti
collection PubMed
description [Image: see text] The complex nature of liquid water saturation of polymer electrolyte fuel cell (PEFC) catalyst layers (CLs) greatly affects the device performance. To investigate this problem, we present a method to quantify the presence of liquid water in a PEFC CL using small-angle X-ray scattering (SAXS). This method leverages the differences in electron densities between the solid catalyst matrix and the liquid water filled pores of the CL under both dry and wet conditions. This approach is validated using ex situ wetting experiments, which aid the study of the transient saturation of a CL in a flow cell configuration in situ. The azimuthally integrated scattering data are fitted using 3D morphology models of the CL under dry conditions. Different wetting scenarios are realized in silico, and the corresponding SAXS data are numerically simulated by a direct 3D Fourier transformation. The simulated SAXS profiles of the different wetting scenarios are used to interpret the measured SAXS data which allows the derivation of the most probable wetting mechanism within a flow cell electrode.
format Online
Article
Text
id pubmed-10251350
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-102513502023-06-10 Quantification of PEFC Catalyst Layer Saturation via In Silico, Ex Situ, and In Situ Small-Angle X-ray Scattering Aliyah, Kinanti Prehal, Christian Diercks, Justus S. Diklić, Nataša Xu, Linfeng Ünsal, Seçil Appel, Christian Pauw, Brian R. Smales, Glen J. Guizar-Sicairos, Manuel Herranz, Juan Gubler, Lorenz Büchi, Felix N. Eller, Jens ACS Appl Mater Interfaces [Image: see text] The complex nature of liquid water saturation of polymer electrolyte fuel cell (PEFC) catalyst layers (CLs) greatly affects the device performance. To investigate this problem, we present a method to quantify the presence of liquid water in a PEFC CL using small-angle X-ray scattering (SAXS). This method leverages the differences in electron densities between the solid catalyst matrix and the liquid water filled pores of the CL under both dry and wet conditions. This approach is validated using ex situ wetting experiments, which aid the study of the transient saturation of a CL in a flow cell configuration in situ. The azimuthally integrated scattering data are fitted using 3D morphology models of the CL under dry conditions. Different wetting scenarios are realized in silico, and the corresponding SAXS data are numerically simulated by a direct 3D Fourier transformation. The simulated SAXS profiles of the different wetting scenarios are used to interpret the measured SAXS data which allows the derivation of the most probable wetting mechanism within a flow cell electrode. American Chemical Society 2023-05-25 /pmc/articles/PMC10251350/ /pubmed/37229747 http://dx.doi.org/10.1021/acsami.3c00420 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Aliyah, Kinanti
Prehal, Christian
Diercks, Justus S.
Diklić, Nataša
Xu, Linfeng
Ünsal, Seçil
Appel, Christian
Pauw, Brian R.
Smales, Glen J.
Guizar-Sicairos, Manuel
Herranz, Juan
Gubler, Lorenz
Büchi, Felix N.
Eller, Jens
Quantification of PEFC Catalyst Layer Saturation via In Silico, Ex Situ, and In Situ Small-Angle X-ray Scattering
title Quantification of PEFC Catalyst Layer Saturation via In Silico, Ex Situ, and In Situ Small-Angle X-ray Scattering
title_full Quantification of PEFC Catalyst Layer Saturation via In Silico, Ex Situ, and In Situ Small-Angle X-ray Scattering
title_fullStr Quantification of PEFC Catalyst Layer Saturation via In Silico, Ex Situ, and In Situ Small-Angle X-ray Scattering
title_full_unstemmed Quantification of PEFC Catalyst Layer Saturation via In Silico, Ex Situ, and In Situ Small-Angle X-ray Scattering
title_short Quantification of PEFC Catalyst Layer Saturation via In Silico, Ex Situ, and In Situ Small-Angle X-ray Scattering
title_sort quantification of pefc catalyst layer saturation via in silico, ex situ, and in situ small-angle x-ray scattering
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10251350/
https://www.ncbi.nlm.nih.gov/pubmed/37229747
http://dx.doi.org/10.1021/acsami.3c00420
work_keys_str_mv AT aliyahkinanti quantificationofpefccatalystlayersaturationviainsilicoexsituandinsitusmallanglexrayscattering
AT prehalchristian quantificationofpefccatalystlayersaturationviainsilicoexsituandinsitusmallanglexrayscattering
AT diercksjustuss quantificationofpefccatalystlayersaturationviainsilicoexsituandinsitusmallanglexrayscattering
AT diklicnatasa quantificationofpefccatalystlayersaturationviainsilicoexsituandinsitusmallanglexrayscattering
AT xulinfeng quantificationofpefccatalystlayersaturationviainsilicoexsituandinsitusmallanglexrayscattering
AT unsalsecil quantificationofpefccatalystlayersaturationviainsilicoexsituandinsitusmallanglexrayscattering
AT appelchristian quantificationofpefccatalystlayersaturationviainsilicoexsituandinsitusmallanglexrayscattering
AT pauwbrianr quantificationofpefccatalystlayersaturationviainsilicoexsituandinsitusmallanglexrayscattering
AT smalesglenj quantificationofpefccatalystlayersaturationviainsilicoexsituandinsitusmallanglexrayscattering
AT guizarsicairosmanuel quantificationofpefccatalystlayersaturationviainsilicoexsituandinsitusmallanglexrayscattering
AT herranzjuan quantificationofpefccatalystlayersaturationviainsilicoexsituandinsitusmallanglexrayscattering
AT gublerlorenz quantificationofpefccatalystlayersaturationviainsilicoexsituandinsitusmallanglexrayscattering
AT buchifelixn quantificationofpefccatalystlayersaturationviainsilicoexsituandinsitusmallanglexrayscattering
AT ellerjens quantificationofpefccatalystlayersaturationviainsilicoexsituandinsitusmallanglexrayscattering